Antimicrobial, antioxidant, and cytotoxic properties of biosynthesized copper oxide nanoparticles (CuO-NPs) using Athrixia phylicoides DC.

Heliyon(2023)

引用 6|浏览4
暂无评分
摘要
Nanoparticles produced from various metal elements including copper have been used in the treatment of infectious diseases in response to antibiotic failure due to microbial resistance. Copper is recommended for use in the production of nanoparticles largely because of its accessibility and affordability. This study aimed to synthesise copper oxide nanoparticles (CuO-NPs) using leaf extracts of and assess their antibacterial, antioxidant and cytotoxicity properties. The characterization of the obtained NPs was done through X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Energy-dispersive spectroscopy (EDS). Our results showed that the NPs had a highly crystalline, quasi-spherical shape with an average diameter of 42 nm. Also, gram-positive bacteria and were the most susceptible to CuO-NPs with MIC values of 0.62 mg/mL and 0.16 mg/mL, respectively, as shown by the broth microdilution method. In addition, CuO-NPs demonstrated strong radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibitory activity with an IC value of 10.68 ± 0.03 μg/mL. However, the cytotoxicity activity determined by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) (MTT) assay revealed that the CuO-NPs were not toxic to human embryonic kidney cells (HEK 293 cells) at an LC value of 66.08 ± 0.55 μg/mL. The synthesised CuO-NPs showed high antibacterial, and antioxidant potency and less toxicity. Therefore, they could be a feasible alternative source of therapeutic agents in treating bacterial and oxidative stress-induced diseases.
更多
查看译文
关键词
copper oxide nanoparticles,cuo-nps
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要