The physics and applications of strongly coupled Coulomb systems (plasmas) levitated in electrodynamic traps

Physics Reports(2023)

引用 2|浏览1
暂无评分
摘要
Charged microparticles confined in electrodynamic traps evolve into strongly coupled Coulomb systems (SCCS) which are the subject of current investigation. Recent results with respect to particle dynamics in linear and nonlinear Paul traps are reviewed, including the case of a confined microparticle in presence of an acoustic wave. An analytical model is used to discuss dynamical stability for a system of two coupled ions confined in a Paul trap. The model is then extended to discuss quantum stability for many-body systems of trapped ions. Dynamical stability for many-body systems of identical ions confined in 3D quadrupole ion traps (QIT) is studied locally, in the neighbourhood of minimum configurations that characterize ordered structures. The analytical model is particularized to the case of a combined trap. It is demonstrated that Paul (ion) traps are versatile instruments to investigate one-component strongly coupled Coulomb systems (microplasmas). Exciting physical phenomena associated to Coulomb systems are reported such as autowave generation, phase transitions, defect formation, system self-locking at the edges of a linear Paul trap, self-organization in layers, or pattern formation and scaling. The dynamics of ordered structures consisting of highly nonideal similarly charged solid particles with coupling parameter of the order Γ=108 is explored. The approach used enables one to explore the interaction of microparticle structures in presence and in absence of the neutralizing plasma background, as well as to investigate various types of phenomena and physical forces experienced by these patterns. Brownian dynamics (BD) is used to characterize charged particle evolution in time and thus identify regions of stable trapping. Analytical models are used to explain the experimental results. Numerical modelling considers stochastic forces of random collisions with neutral particles, viscosity of the gas medium, regular forces produced by the a.c. trapping voltage, and gravitational force. Microparticle dynamics is characterized by a stochastic Langevin differential equation. Laser plasma acceleration of charged particles is also discussed, with an emphasis on Paul traps employed to investigate collective effects in space-charge-dominated (relativistic) beams, and for target micropositioning. This review paper is both an add-on as well as an update on late progress in SCCS confined in electrodynamic traps.
更多
查看译文
关键词
coulomb systems,plasmas
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要