Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex

Journal of Biological Chemistry(2023)

引用 1|浏览2
暂无评分
摘要
Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach. Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach. Nuclear receptors (NRs) are a family of structurally similar, mostly ligand-regulated, transcription factors that control a diverse set of biological processes, including metabolism, cell proliferation, development, and immunity (1Robinson-Rechavi M. Garcia H.E. Laudet V. The nuclear receptor superfamily.J. Cell Sci. 2003; 116: 585-586Crossref PubMed Scopus (372) Google Scholar, 2Weikum E.R. Liu X. Ortlund E.A. The nuclear receptor superfamily: a structural perspective.Protein Sci. 2018; 27: 1876-1892Crossref PubMed Scopus (198) Google Scholar). Several small molecules, including steroid hormones, fatty acids, vitamin D, and thyroid hormones, regulate NR activity by binding the NR’s ligand binding domain (LBD) (3Mangelsdorf D.J. Thummel C. Beato M. Herrlich P. Schütz G. Umesono K. et al.The nuclear receptor superfamily: the second decade.Cell. 1995; 83: 835-839Abstract Full Text PDF PubMed Scopus (6120) Google Scholar, 4Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics.Annu. Rev. Physiol. 2010; 72: 247-272Crossref PubMed Scopus (380) Google Scholar). Given their central role in gene regulation, NRs are associated with a broad scope of diseases, including autoimmune diseases, metabolic disorders, and cancer (2Weikum E.R. Liu X. Ortlund E.A. The nuclear receptor superfamily: a structural perspective.Protein Sci. 2018; 27: 1876-1892Crossref PubMed Scopus (198) Google Scholar, 5Zhao L. Zhou S. Gustafsson J.Å. Nuclear receptors: recent drug discovery for cancer therapies.Endocr. Rev. 2019; 40: 1207-1249PubMed Google Scholar, 6Gronemeyer H. Gustafsson J.Å. Laudet V. Principles for modulation of the nuclear receptor superfamily.Nat. Rev. Drug Discov. 2004; 3: 950-964Crossref PubMed Scopus (951) Google Scholar). The involvement of NRs in various pathological processes, combined with their ability to bind “drug-like” small molecules, have made NR-targeting therapeutics extensively utilized in the clinic to treat diseases (4Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics.Annu. Rev. Physiol. 2010; 72: 247-272Crossref PubMed Scopus (380) Google Scholar, 7Moore J.T. Collins J.L. Pearce K.H. The nuclear receptor superfamily and drug discovery.ChemMedChem. 2006; 1: 504-523Crossref PubMed Scopus (126) Google Scholar). Most NR-targeting drugs antagonize the activity of the protein by orthosteric inhibition of native ligand binding to the LBD (4Huang P. Chandra V. Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics.Annu. Rev. Physiol. 2010; 72: 247-272Crossref PubMed Scopus (380) Google Scholar, 6Gronemeyer H. Gustafsson J.Å. Laudet V. Principles for modulation of the nuclear receptor superfamily.Nat. Rev. Drug Discov. 2004; 3: 950-964Crossref PubMed Scopus (951) Google Scholar). For example, 4-hydroxytamoxifen (4-OHT) inhibits ERα activity by displacing its natural ligand estradiol (E2, Fig. 1, A and B) (5Zhao L. Zhou S. Gustafsson J.Å. Nuclear receptors: recent drug discovery for cancer therapies.Endocr. Rev. 2019; 40: 1207-1249PubMed Google Scholar, 6Gronemeyer H. Gustafsson J.Å. Laudet V. Principles for modulation of the nuclear receptor superfamily.Nat. Rev. Drug Discov. 2004; 3: 950-964Crossref PubMed Scopus (951) Google Scholar). Despite the huge successes of orthosteric NR inhibitors, there is a growing interest in targeting NRs in alternative manners (8Meijer F.A. Leijten-van de Gevel I.A. de Vries R.M.J.M. Brunsveld L. Allosteric small molecule modulators of nuclear receptors.Mol. Cell. Endocrinol. 2019; 485: 20-34Crossref PubMed Scopus (25) Google Scholar, 9Caboni L. Lloyd D.G. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors.Med. Res. Rev. 2013; 33: 1081-1118Crossref PubMed Scopus (53) Google Scholar, 10Moore T.W. Mayne C.G. Katzenellenbogen J.A. Minireview: not picking pockets: nuclear receptor alternate-site modulators (NRAMs).Mol. Endocrinol. 2010; 24: 683-695Crossref PubMed Scopus (111) Google Scholar, 11De Bosscher K. Desmet S.J. Clarisse D. Estébanez-Perpiña E. Brunsveld L. Nuclear receptor crosstalk — defining the mechanisms for therapeutic innovation.Nat. Rev. Endocrinol. 2020; 16: 363-377Crossref PubMed Scopus (76) Google Scholar). Novel therapeutic approaches include ligands that target allosteric sites in the LBD (12Scheepstra M. Leysen S. van Almen G.C. Miller J.R. Piesvaux J. Kutilek V. et al.Identification of an allosteric binding site for RORγt inhibition.Nat. Commun. 2015; 6: 8833Crossref PubMed Scopus (71) Google Scholar, 13Hughes T.S. Giri P.K. de Vera I.M.S. Marciano D.P. Kuruvilla D.S. Shin Y. et al.An alternate binding site for PPARγ ligands.Nat. Commun. 2014; 5: 3571Crossref PubMed Google Scholar, 14De Vera I.M.S. Giri P.K. Munoz-Tello P. Brust R. Fuhrmann J. Matta-Camacho E. et al.Identification of a binding site for unsaturated fatty acids in the orphan nuclear receptor Nurr1.ACS Chem. Biol. 2016; 11: 1795-1799Crossref PubMed Scopus (44) Google Scholar), NR–DNA interactions (15Li H. Ban F. Dalal K. Leblanc E. Frewin K. Ma D. et al.Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor.J. Med. Chem. 2014; 57: 6458-6467Crossref PubMed Scopus (89) Google Scholar, 16Wang L.H. Yang X.Y. Zhang X. An P. Kim H.J. Huang J. et al.Disruption of estrogen receptor DNA-binding domain and related intramolecular communication restores tamoxifen sensitivity in resistant breast cancer.Cancer Cell. 2006; 10: 487-499Abstract Full Text Full Text PDF PubMed Scopus (63) Google Scholar, 17Veras Ribeiro Filho H. Tambones I.L. Mariano Gonçalves Dias M. Bernardi Videira N. Bruder M. Amorim Amato A. et al.Modulation of nuclear receptor function: targeting the protein-DNA interface.Mol. Cell. Endocrinol. 2019; 484: 1-14Crossref PubMed Scopus (16) Google Scholar), NR dimerization (18Arnold S.F. Notides A.C. An antiestrogen: a phosphotyrosyl peptide that blocks dimerization of the human estrogen receptor.Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 7475-7479Crossref PubMed Scopus (52) Google Scholar, 19Spathis A.D. Asvos X. Ziavra D. Karampelas T. Topouzis S. Cournia Z. et al.Nurr1:RXRα heterodimer activation as monotherapy for Parkinson’s disease.Proc. Natl. Acad. Sci. U. S. A. 2017; 114: 3999-4004Crossref PubMed Google Scholar, 20Leibowitz M.D. Ardecky R.J. Boehm M.F. Broderick C.L. Carfagna M.A. Crombie D.L. et al.Biological characterization of a heterodimer-selective retinoid X receptor modulator: potential benefits for the treatment of type 2 diabetes.Endocrinology. 2006; 147: 1044-1053Crossref PubMed Scopus (67) Google Scholar, 21Scheepstra M. Andrei S.A. De Vries R.M.J.M. Meijer F.A. Ma J.N. Burstein E.S. et al.Ligand dependent switch from RXR homo- to RXR-NURR1 heterodimerization.ACS Chem. Neurosci. 2017; 8: 2065-2077Crossref PubMed Scopus (14) Google Scholar), NR-cofactor interfaces (22Tice C.M. Zheng Y.-J. Non-canonical modulators of nuclear receptors.Bioorg. Med. Chem. Lett. 2016; 26: 4157-4164Crossref PubMed Scopus (22) Google Scholar, 23Ravindranathan P. Lee T.K. Yang L. Centenera M.M. Butler L. Tilley W.D. et al.Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer.Nat. Commun. 2013; 4: 1923Crossref PubMed Scopus (111) Google Scholar, 24Chen F. Liu J. Huang M. Hu M. Su Y. Zhang X.K. Identification of a new RXRα antagonist targeting the coregulator-binding site.ACS Med. Chem. Lett. 2014; 5: 736-741Crossref PubMed Scopus (31) Google Scholar, 25Biron E. Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer.J. Steroid Biochem. Mol. Biol. 2016; 161: 36-44Crossref PubMed Scopus (15) Google Scholar), or induce targeted NR degradation (26Flanagan J.J. Neklesa T.K. Targeting nuclear receptors with PROTAC degraders.Mol. Cell. Endocrinol. 2019; 493110452Crossref PubMed Scopus (48) Google Scholar, 27Mullard A. First targeted protein degrader hits the clinic.Nat. Rev. Drug Discov. 2019; 18: 237-239Google Scholar, 28Jia X. Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside.Biomed. Pharmacother. 2023; 158114112Crossref Scopus (4) Google Scholar). Drugging NRs beyond the orthosteric site of the LBD offers entry points into selective NR targeting, fine-tuning of pharmacological effects, targeting of drug-resistant NRs, or addressing orphan NRs that lack an accessible ligand binding pocket (8Meijer F.A. Leijten-van de Gevel I.A. de Vries R.M.J.M. Brunsveld L. Allosteric small molecule modulators of nuclear receptors.Mol. Cell. Endocrinol. 2019; 485: 20-34Crossref PubMed Scopus (25) Google Scholar, 9Caboni L. Lloyd D.G. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors.Med. Res. Rev. 2013; 33: 1081-1118Crossref PubMed Scopus (53) Google Scholar, 10Moore T.W. Mayne C.G. Katzenellenbogen J.A. Minireview: not picking pockets: nuclear receptor alternate-site modulators (NRAMs).Mol. Endocrinol. 2010; 24: 683-695Crossref PubMed Scopus (111) Google Scholar). An alternative approach to modulate NR activity is via their protein–protein interaction (PPI) with the hub protein 14-3-3. These 14-3-3 proteins are known to interact, and thereby regulate, hundreds of different, mainly phosphorylated, protein partners. Within the large interactome of 14-3-3 are many well-known disease-related proteins such as the Raf kinases (cancer), LRRK2 (Parkinson’s), and CFTR (cystic fibrosis), which make 14-3-3 proteins highly involved in a larger variety of cellular processes and which makes 14-3-3 protein complexes highly interesting as drug discovery targets (29Stevers L.M. Sijbesma E. Botta M. MacKintosh C. Obsil T. Landrieu I. et al.Modulators of 14-3-3 protein–protein interactions.J. Med. Chem. 2018; 61: 3755-3778Crossref PubMed Scopus (154) Google Scholar). Among the 14-3-3 protein partners are various NRs, including the steroid hormone-responsive Androgen Receptor (AR), Glucocorticoid Receptor (GR), and Estrogen Receptor alpha (ERα) (Figs. S1 and S2). Specifically, 14-3-3 binds AR upon phosphorylation of Ser213 in the N-terminal domain (NTD), thereby modulating AR transcriptional activity (30Haendler B. Schüttke I. Schleuning W.D. Androgen receptor signalling: comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3η.Mol. Cell. Endocrinol. 2001; 173: 63-73Crossref PubMed Scopus (33) Google Scholar, 31Quayle S.N. Sadar M.D. 14-3-3 sigma increases the transcriptional activity of the androgen receptor in the absence of androgens.Cancer Lett. 2007; 254: 137-145Crossref PubMed Scopus (15) Google Scholar, 32Titus M.A. Tan J.A. Gregory C.W. Ford O.H. Subramanian R.R. Fu H. et al.14-3-3η amplifies androgen receptor actions in prostate cancer.Clin. Cancer Res. 2009; 15: 7571-7581Crossref PubMed Scopus (12) Google Scholar, 33Murata T. Takayama K.I. Urano T. Fujimura T. Ashikari D. Obinata D. et al.14-3-3ζ, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival.Clin. Cancer Res. 2012; 18: 5617-5627Crossref PubMed Scopus (52) Google Scholar, 34Ruff S.E. Vasilyev N. Nudler E. Logan S.K. Garabedian M.J. PIM1 phosphorylation of the androgen receptor and 14-3-3 ζ regulates gene transcription in prostate cancer.Commun. Biol. 2021; 4: 1-15Crossref PubMed Scopus (1) Google Scholar). Similarly, 14-3-3 binding enhances GR activity upon binding to pS134 in the NTD or pT524 in the LBD (35Habib T. Sadoun A. Nader N. Suzuki S. Liu W. Jithesh P.V. et al.AKT1 has dual actions on the glucocorticoid receptor by cooperating with 14-3-3.Mol. Cell. Endocrinol. 2017; 439: 431-443Crossref PubMed Scopus (14) Google Scholar, 36Galliher-Beckley A.J. Williams J.G. Cidlowski J.A. Ligand-independent phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear receptor signaling.Mol. Cell. Biol. 2011; 31: 4663-4675Crossref PubMed Scopus (117) Google Scholar, 37Wakui H. Wright A.P.H. Gustafsson J.Å. Zilliacus J. Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3η protein.J. Biol. Chem. 1997; 272: 8153-8156Abstract Full Text Full Text PDF PubMed Scopus (82) Google Scholar). In the case of ERα, 14-3-3 binds the phosphorylated penultimate residue T594 in the C-terminal F-domain (Fig. 1C), thereby reducing E2-dependent transcriptional activity (38De Vries-van Leeuwen I.J. da Costa Pereira D. Flach K.D. Piersma S.R. Haase C. Bier D. et al.Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 8894-8899Crossref PubMed Scopus (92) Google Scholar). Cellular studies have further reported 14-3-3 binding to the DNA-binding domain (DBD) of ERRγ, the LBD of PPARγ, and ERβ, TRα, and PXR of which the exact binding sites remain unknown (39Kim D.K. Kim Y.H. Hynx D. Wang Y. Yang K.J. Ryu D. et al.PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.Diabetologia. 2014; 57: 2576-2585Crossref PubMed Scopus (36) Google Scholar, 40Liu L. Lin Y. Liu L. Bian Y. Zhang L. Gao X. et al.14-3-3γ regulates lipopolysaccharide-induced inflammatory responses and lactation in dairy cow mammary epithelial cells by inhibiting NF-κB and MAPKs and up-regulating mTOR signaling.Int. J. Mol. Sci. 2015; 16: 16622-16641Crossref PubMed Scopus (24) Google Scholar, 41Park S. Yoo S. Kim J. An H.T. Kang M. Ko J. 14-3-3β and γ differentially regulate peroxisome proliferator activated receptor γ2 transactivation and hepatic lipid metabolism.Biochim. Biophys. Acta. 2015; 1849: 1237-1247Crossref PubMed Scopus (12) Google Scholar, 42Zilliacus J. Holter E. Wakui H. Tazawa H. Treuter E. Gustafsson J.-A. et al.Regulation of glucocorticoid receptor activity by 14–3-3-dependent intracellular relocalization of the corepressor RIP140.Mol. Endocrinol. 2001; 15: 501-511Crossref PubMed Scopus (66) Google Scholar, 43Kim S.W. Hasanuzzaman Md. Cho M. Kim N.H. Choi H.Y. Han J.W. et al.Role of 14-3-3 sigma in over-expression of P-gp by rifampin and paclitaxel stimulation through interaction with PXR.Cell. Signal. 2017; 31: 124-134Crossref PubMed Scopus (21) Google Scholar). These examples illustrate the diverse role that 14-3-3 plays in NR regulation and, by extension, the potential of targeting NR/14-3-3 PPIs. Initial studies have shown that NR/14-3-3 PPIs can be modulated using small molecules. Specifically, the natural product FC-A or covalently tethered small molecules have been shown to stabilize the ERα/14-3-3 and ERRγ/14-3-3 PPIs (Figs. 1C and S3) (38De Vries-van Leeuwen I.J. da Costa Pereira D. Flach K.D. Piersma S.R. Haase C. Bier D. et al.Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 8894-8899Crossref PubMed Scopus (92) Google Scholar, 44Somsen B.A. Schellekens R.J.C. Verhoef C.J.A. Arkin M.R. Ottmann C. Cossar P.J. et al.Reversible dual-covalent molecular locking of the 14-3-3/ERRγ protein–protein interaction as a molecular glue drug discovery approach.J. Am. Chem. Soc. 2023; 145: 6741-6752Crossref PubMed Scopus (1) Google Scholar, 45Sijbesma E. Somsen B.A. Miley G.P. Leijten-Van De Gevel I.A. Brunsveld L. Arkin M.R. et al.Fluorescence anisotropy-based tethering for discovery of protein-protein interaction stabilizers.ACS Chem. Biol. 2020; 15: 3143-3148Crossref PubMed Scopus (16) Google Scholar, 46Sijbesma E. Hallenbeck K.K. Leysen S. de Vink P.J. Skóra L. Jahnke W. et al.Site-directed fragment-based screening for the discovery of protein–protein interaction stabilizers.J. Am. Chem. Soc. 2019; 141: 3524-3531Crossref PubMed Scopus (59) Google Scholar). These small molecules, also called molecular glues, increase the binding affinity between the two protein partners (PPI stabilization) by binding in a composite pocket formed at the interface of 14-3-3 and the phosphorylated NR protein. Further, stabilization of the ERα/14-3-3 PPI by FC-A suppresses ERα chromatin binding and subsequent transcriptional activity (38De Vries-van Leeuwen I.J. da Costa Pereira D. Flach K.D. Piersma S.R. Haase C. Bier D. et al.Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 8894-8899Crossref PubMed Scopus (92) Google Scholar). These results illustrate the potential of the stabilization of the ERα/14-3-3 interaction as an alternative drug discovery entry. Despite the potential of therapeutic targeting of NR/14-3-3 complexes, little is known about NR/14-3-3 interactions on a molecular level. To date, biochemical and structural studies of NR/14-3-3 complexes have been exclusively performed using short phosphopeptide mimics of the NRs (Figs. 1C and S2) (45Sijbesma E. Somsen B.A. Miley G.P. Leijten-Van De Gevel I.A. Brunsveld L. Arkin M.R. et al.Fluorescence anisotropy-based tethering for discovery of protein-protein interaction stabilizers.ACS Chem. Biol. 2020; 15: 3143-3148Crossref PubMed Scopus (16) Google Scholar, 46Sijbesma E. Hallenbeck K.K. Leysen S. de Vink P.J. Skóra L. Jahnke W. et al.Site-directed fragment-based screening for the discovery of protein–protein interaction stabilizers.J. Am. Chem. Soc. 2019; 141: 3524-3531Crossref PubMed Scopus (59) Google Scholar, 47Munier C.C. De Maria L. Edman K. Gunnarsson A. Longo M. MacKintosh C. et al.Glucocorticoid receptor Thr524 phosphorylation by MINK1 induces interactions with 14-3-3 protein regulators.J. Biol. Chem. 2021; 296100551Abstract Full Text Full Text PDF PubMed Scopus (7) Google Scholar). Studies of NR/14-3-3 complexes using protein domains or full-length NRs, such as those performed for other 14-3-3 PPIs (48Alblova M. Smidova A. Docekal V. Vesely J. Herman P. Obsilova V. et al.Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1.Proc. Natl. Acad. Sci. U. S. A. 2017; 114: E9811-E9820Crossref PubMed Scopus (43) Google Scholar, 49Obsil T. Ghirlando R. Klein D.C. Ganguly S. Dyda F. Crystal structure of the 14-3-3ζ:serotonin N-acetyltransferase complex: a role for scaffolding in enzyme regulation.Cell. 2001; 105: 257-267Abstract Full Text Full Text PDF PubMed Scopus (331) Google Scholar, 50Park E. Rawson S. Li K. Kim B.W. Ficarro S.B. Pino G.G. et al.Architecture of autoinhibited and active BRAF–MEK1–14-3-3 complexes.Nature. 2019; 575: 545-550Crossref PubMed Scopus (126) Google Scholar, 51Kondo Y. Ognjenović J. Banerjee S. Karandur D. Merk A. Kulhanek K. et al.(2019) Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases.Science. 1979; 366: 109-115Crossref Scopus (82) Google Scholar), are needed to gain an enhanced molecular and structural understanding of NR/14-3-3 complex formation. As an example, the use of the entire NR LBD allows studies on the interplay between NR/14-3-3 complex formation and aspects like NR dimerization, ligand binding, and cofactor recruitment. Additionally, small molecule stabilization of full-length NR/14-3-3 complexes can be investigated in the context of clinically relevant NR point mutations which is of high interest (52Choi J.H. Banks A.S. Estall J.L. Kajimura S. Boström P. Laznik D. et al.Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5.Nature. 2010; 466: 451-456Crossref PubMed Scopus (704) Google Scholar, 53Tharun I.M. Nieto L. Haase C. Scheepstra M. Balk M. Möcklinghoff S. et al.Subtype-specific modulation of estrogen receptor-coactivator interaction by phosphorylation.ACS Chem. Biol. 2015; 10: 475-484Crossref PubMed Scopus (14) Google Scholar, 54Fanning S.W. Mayne C.G. Dharmarajan V. Carlson K.E. Martin T.A. Novick S.J. et al.Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation.Elife. 2016; 5e12792Crossref PubMed Scopus (178) Google Scholar, 55Zwart W. Griekspoor A. Berno V. Lakeman K. Jalink K. Mancini M. et al.PKA-induced resistance to tamoxifen is associated with an altered orientation of ERα towards co-activator SRC-1.EMBO J. 2007; 26: 3534-3544Crossref PubMed Scopus (96) Google Scholar). Molecular insights into NR/14-3-3 PPIs beyond the phospho-binding groove would also provide the potential to identify novel composite binding pockets for small molecule targeting, thereby expanding the number of entry points for novel PPI modulator design and increasing the potential for selectivity (56Sijbesma E. Skora L. Leysen S. Brunsveld L. Koch U. Nussbaumer P. et al.Identification of two secondary ligand binding sites in 14-3-3 proteins using fragment screening.Biochemistry. 2017; 56: 3972-3982Crossref PubMed Scopus (28) Google Scholar). Within this work, we aim to enhance our understanding of 14-3-3 binding to ERα via in vitro characterization of the protein complex formed by 14-3-3ζ and an ERα construct comprising the LBD and phosphorylated F domain. To gain a robust understanding of protein complex formation and the stoichiometry of binding, several biophysical assays were performed, including analytical size exclusion chromatography (SEC) and analytical ultracentrifugation (AUC). In addition, differential scanning fluorimetry (DSF), fluorescence anisotropy (FA), and hydrogen-deuterium exchange (HDX) experiments determined the role of ERα ligands E2 and 4-OHT on ERα/14-3-3 complex formation and identified 14-3-3 binding to the drug-resistant ERα-Y537S mutant. Finally, we show that the ERα/14-3-3 PPI can be stabilized by the natural product FC-A and that this PPI stabilization can be achieved independently from ERα ligand binding in both wild-type ERα and the ERα-Y537S mutant, thus presenting a potential orthogonal therapeutic strategy for targeting endocrine resistance in breast cancer. Most biochemical and structural studies on the ERα protein have focused on the ERα LBD, most often ending after helix 12 (∼ residue S554) (57Min J. Nwachukwu J.C. Min C.K. Njeri J.W. Srinivasan S. Rangarajan E.S. et al.Dual-mechanism estrogen receptor inhibitors.Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2101657118Crossref Scopus (10) Google Scholar, 58Shiau A.K. Barstad D. Radek J.T. Meyers M.J. Nettles K.W. Katzenellenbogen B.S. et al.Structural characterization of a subtype-selective ligand reveals a novel mode of estrogen receptor antagonism.Nat. Struct. Biol. 2002; 9: 359-364PubMed Google Scholar). These studies exclude the 42-residue-long, intrinsically disordered, and solvent-exposed C-terminal F-domain (Fig. S4). The ERα F-domain is described to influence ERα dimerization and co-activator binding; however, as one of the least conserved regions among NRs, the structure and role of the ERα F-domain remain largely unknown (38De Vries-van Leeuwen I.J. da Costa Pereira D. Flach K.D. Piersma S.R. Haase C. Bier D. et al.Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 8894-8899Crossref PubMed Scopus (92) Google Scholar, 59Arnal J.F. Lenfant F. Metivier R. Flouriot G. Henrion D. Adlanmerini M. et al.Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications.Physiol. Rev. 2017; 97: 1045-1087Crossref PubMed Scopus (226) Google Scholar, 60Patel S.R. Skafar D.F. Modulation of nuclear receptor activity by the F domain.Mol. Cell. Endocrinol. 2015; 418: 298-305Crossref PubMed Scopus (23) Google Scholar, 61Peters G.A. Khan S.A. Estrogen receptor domains E and F: role in dimerization and interaction with coactivator RIP-140.Mol. Endocrinol. 1999; 13: 286-296Crossref PubMed Google Scholar). The ERα F-domain contains a penultimate threonine residue (T594) that upon phosphorylation facilitates the binding of 14-3-3 to ERα (38De Vries-van Leeuwen I.J. da Costa Pereira D. Flach K.D. Piersma S.R. Haase C. Bier D. et al.Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface.Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 8894-8899Crossref PubMed Scopus (92) Google Scholar). To gain mechanistic insights into the combined role of the ERα LBD and F-domain in concert with 14-3-3 binding, an ERα construct was designed comprising both domains (residues 302–595) (Fig. 2A). Since the responsible kinase is not known, native T594 phosphorylation is inaccessible. We thus introduced double-point mutations (F591R/P592R) within the ERα construct, enabling PKA phosphorylation at T594. The two-point mutations make the ERα C-terminal end closely match with the consensus sequence of known PKA substrates (RRXS/TY), thereby increasing the chances of successful phosphorylation of T594 by PKA (62Blom N. Kreegipuu A. Brunak S. PhosphoBase: a database of phosphorylation sites.Nucleic Acids Res. 1998; 26: 382-386Crossref PubMed Scopus (52) Google Scholar). Fluorescence anisotropy binding studies of 14-3-3ζ to peptide mimics of the wild-type (WT) ERα and PKA-responsive ERα sequence confirmed that the PKA-responsive point mutations did not hamper binding of ERα to 14-3-3ζ (Fig. S5). The PKA-responsive ERα (ERα(PKA)) construct was expressed and purified from E. coli; however, yielded solely in truncated ERα protein (at residues 570 and 572) as apparent from mass spectrometry analysis (Fig. S6). The truncation of the F-domain was addressed by incorporation of a C-terminal strep-tag (ERα(PKA)-strep), resulting in successful expression, purification, and PKA-mediated phosphorylation of ERα (Fig. S7). Notably, the introduction of a C-terminal strep-tag significantly changed the 14-3-3-binding site of ERα. Fluorescence anisotropy binding studies of WT ERα, ERα(PKA), and ERα(PKA)-strep phosphopeptides to 14-3-3ζ showed a 50-fold reduction in binding affinity upon introduction of the strep-tag to the C-terminal end of ERα peptide (Fig. S8). Moreover, stabilization of the ERα(PKA)-str
更多
查看译文
关键词
Nuclear receptors,protein–protein interactions,Estrogen Receptor,14-3-3 protein,PPI stabilization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要