Elevated FOXG1 in glioblastoma stem cells cooperates with Wnt/β-catenin to induce exit from quiescence

Cell Reports(2023)

引用 0|浏览17
暂无评分
摘要
Glioblastoma (GBM) stem cells (GSCs) display phenotypic and molecular features reminiscent of normal neural stem cells and exhibit a spectrum of cell cycle states (dormant, quiescent, proliferative). However, mechanisms controlling the transition from quiescence to proliferation in both neural stem cells (NSCs) and GSCs are poorly understood. Elevated expression of the forebrain transcription factor FOXG1 is often observed in GBMs. Here, using small-molecule modulators and genetic perturbations, we identify a synergistic interaction between FOXG1 and Wnt/β-catenin signaling. Increased FOXG1 enhances Wnt-driven transcriptional targets, enabling highly efficient cell cycle re-entry from quiescence; however, neither FOXG1 nor Wnt is essential in rapidly proliferating cells. We demonstrate that FOXG1 overexpression supports gliomagenesis in vivo and that additional β-catenin induction drives accelerated tumor growth. These data indicate that elevated FOXG1 cooperates with Wnt signaling to support the transition from quiescence to proliferation in GSCs.
更多
查看译文
关键词
glioblastoma,neural stem cell,quiescence,cell cycle,FOXG1,GSK3 inhibitor,Wnt signaling,β-catenin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要