Exogenous nitric oxide generated from SNAP blocks porcine circovirus type 2 replication and regulates NF-κB activity in PK-15 cells

International Journal of Antimicrobial Agents(2023)

引用 0|浏览3
暂无评分
摘要
OBJECTIVES:PCV2-associated disease (PCVAD), caused by porcine circovirus type 2 (PCV2) infection, is one of the major infectious diseases in the global swine industry. Nitric oxide (NO), as an important signalling molecule, has antiviral activities against a variety of viruses. To date, limited knowledge is available on the role of NO during PCV2 infection. METHODS:This study was conducted to investigate the effects of exogenous NO on PCV2 replication in vitro. To exclude the possibility that the detected antiviral effects were due to cell toxicity, maximum non-cytotoxic concentrations of the drugs were determined. Kinetics of NO production were assessed after drug treatment. The antiviral activities of NO at different concentrations and at different time points were carefully assessed by measuring the virus titers, viral DNA copies and percentage of PCV2-infected cells. Regulation of NF-κB activity by exogenous NO was also investigated. RESULTS:Kinetics of NO production indicated that S-nitroso-acetylpenicillamine (SNAP) produced NO in a dose-dependent manner, while NO was scavenged by its scavenger haemoglobin (Hb). An in vitro antiviral assay demonstrated that exogenous NO strongly inhibited PCV2 replication in a time-dependent and dose-dependent manner, whereas the inhibitory effects could be reversed by Hb. Furthermore, inhibition of NF-κB activity induced by NO contributed to a notable decrease in PCV2 replication. CONCLUSION:These findings provide a new potential antiviral therapy against PCV2 infection, and the antiviral effects of exogenous NO may be partly achieved by regulating NF-κB activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要