Chitosan/carboxymethylcellulose polyelectrolyte complexes (PECs) are an effective material for dye and heavy metal adsorption from water

Danielle Cristine Mota Ferreira, Thaís Cristina dos Santos,Jane Sélia dos Reis Coimbra,Eduardo Basílio de Oliveira

Carbohydrate Polymers(2023)

引用 9|浏览6
暂无评分
摘要
Granular macroscopic chitosan/carboxymethylcellulose polyelectrolytic complexes (CHS/CMC macro-PECs) were produced and tested as adsorbents for six pollutants often present in wastewaters: sunset yellow (YS), methylene blue (MB), Congo red (CR) and safranin (S), cadmium (Cd2+) and lead (Pb2+). The optimum adsorption pH values at 25 °C were 3.0, 11.0, 2.0, 9.0, 10.0, and 9.0 for YS, MB, CR, S, Cd2+, and Pb2+, respectively. Kinetic studies indicated that the pseudos-econd order model best represented the adsorption kinetics of YS, MB, CR, and Cd2+, whereas the pseudo-first order model was the most suitable for S and Pb2+ adsorption. The Langmuir, Freundlich, and Redlich-Peterson isotherms were fitted to experimental adsorption data, with the Langmuir model providing the best fit. The maximum adsorption capacity (qmáx) of CHS/CMC macro-PECs for the removal of YS, MB, CR, S, Cd2+, and Pb2+ was 37.81, 36.44, 70.86, 72.50, 75.43, and 74.42 mg/g, respectively (corresponding to 98.91 %, 94.71 %, 85.73 %, 94.66 %, 98.46 %, and 97.14 %). Desorption assays showed that CHS/CMC macro-PECs can be regenerated after adsorbing any of the six pollutants studied, with possibility of reuse. These results provide an accurate quantitative characterization of the adsorption of organic and inorganic pollutants on CHS/CMC macro-PECs, indicating a novel technological applicability of these two inexpensive, easy-to-obtain polysaccharides for water decontamination.
更多
查看译文
关键词
qe0,CMC,CHS,CR,C0,%R,Cd,qD,Kf,C,kd,Pb2+,LQ,LD,n,Qm,MB,PEC,k1,k2,KR, α, β,S,SEM,YS,pHZPC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要