Self-Attention LSTM-FCN model for arrhythmia classification and uncertainty assessment

Artificial Intelligence in Medicine(2023)

引用 2|浏览12
暂无评分
摘要
This paper presents ArrhyMon, a self-attention-based LSTM-FCN model for arrhythmia classification from ECG signal inputs. ArrhyMon targets to detect and classify six different types of arrhythmia apart from normal ECG patterns. To the best of our knowledge, ArrhyMon is the first end-to-end classification model that successfully targets the classification of six detailed arrhythmia types and compared to previous work does not require additional preprocessing and/or feature extraction operations separate from the classification model. ArrhyMon's deep learning model is designed to capture and exploit both global and local features embedded in ECG sequences by integrating fully convolutional network (FCN) layers and a self-attention-based long and short-term memory (LSTM) architecture. Moreover, to enhance its practicality, ArrhyMon incorporates a deep ensemble-based uncertainty model that generates a confidence-level measure for each classification result. We evaluate ArrhyMon's effectiveness using three publicly available arrhythmia datasets (i.e., MIT-BIH, Physionet Cardiology Challenge 2017 and 2020/2021) to show that ArrhyMon achieves state-of-the-art classification performance (average accuracy 99.63%), and that confidence measures show close correlation with subjective diagnosis made from practitioners.
更多
查看译文
关键词
Arrhythmia classification,Self-attention networks,Electrocardiogram analysis,Model uncertainty
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要