Design, fabrication, and hypervelocity impact testing of screen-printed flexible micrometeoroid and orbital debris impact sensors for long-duration spacecraft health monitoring

Aerospace Science and Technology(2023)

引用 0|浏览10
暂无评分
摘要
Micrometeoroid and orbital debris (MMOD) are a key risk for spacecraft damage that could compromise missions. Detecting and evaluating MMOD damage is therefore a crucial component in the health monitoring of spacecraft, especially for long duration, deep space expeditions. In this work, we developed a passive sensor system fabricated from conductive metal ink screen-printed on flexible Kapton, using roll-to-roll manufacturing suitable for low-cost fabrication of large areas of sensors, as a MMOD sensor for a spacecraft shield. The sensor is integrated into a low density, two-wall Whipple shield comprising of thin aluminum sheets sandwiching a polyimide foam. The shield with the sensors were tested with hypervelocity impacts at approximately 7 km/s using different particle diameters. Data collected from the sensors were successfully used to determine the impact size, impact location, and predict the impact energy of the damage.
更多
查看译文
关键词
Micrometeoroid, Impact, Sensors, Hypervelocity, Printed electronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要