Triple isotopic composition of oxygen in water and dioxygen during deglaciations recorded in the EPICA Dome C ice core to link climate, biosphere productivity and water cycle

crossref(2020)

引用 0|浏览3
暂无评分
摘要
<p>High precision measurements of triple isotopic composition of oxygen in water is a useful tool to infer the dynamic of past hydrological cycle when measured in ice core together with &#948;<sup>18</sup>O and &#948;D. In particular, the triple isotopic composition of oxygen in water provides information on the climatic conditions of the evaporative sources. In parallel, it has been shown that the triple isotopic composition of oxygen in the atmospheric dioxygen can be a useful tracer of the global biosphere productivity and hence reconstruct the dynamic of the global biosphere productivity in the past from measurements performed in the air bubbles. Measuring triple isotopic composition of oxygen both in the water and in the atmospheric dioxygen trapped in bubbles in ice cores is thus a strong added value to study the past variability of water cycle and biosphere productivity in parallel to climate change.</p><p>Here, we first present new laboratory experiments performed in closed biological chambers to show how the triple isotopic composition of oxygen in atmospheric dioxygen can be used for quantification of the biosphere productivity with determination of fractionation coefficients. Then, we present new records of triple isotopic composition of oxygen in water and O<sub>2</sub> trapped in bubbles from the EPICA Dome C ice core over the deglaciations of the last 800 ka.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要