Simulation of the Dynamic Behaviour of the ZTA Composites Obtained by Additive Technologies

Vladimir Promakhov, Maksim Korobenkov, Nikita Schults, Ilia Zhukov,Viktor Klimenko,Alexander Vorozhtsov,Alexander Zhukov

crossref(2020)

引用 0|浏览0
暂无评分
摘要
This paper presents a physical and mathematical model that has been developed in the framework of the approach used in the computational mechanics of materials. The model is designed to enable the study of the patterns of deformation and fracture of ceramic composites with a transformation-hardened matrix that are obtained by additive technologies at the mesoscopic and macroscopic levels under intense dynamic loading. The influence of the loading rate on the formation of the fracture and energy dissipation fronts for composite materials, based on the Al2O3 20%ZrO2 system, is shown. Nonlinear effects under intense dynamic loading in the considered composites are associated with the processes of self-organization of structural fragments at the mesoscopic level, as well as the occurrence of martensitic phase transformations in matrix volumes adjacent to the strengthening particles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要