Design of a machine learning-aided screening framework for antibiofilm peptides

Digital Chemical Engineering(2023)

引用 0|浏览6
暂无评分
摘要
Biofilms are formed by multicellular colonies of microorganisms that are protected by hard extracellular matrices. Eradication of biofilms is a challenging task due to their recalcitrant nature and thus biofilm formation poses a global threat to public health. In this regard, antibiofilm peptides are a promising class of therapeutics that are active against biofilms. However, large-scale experimental screening and testing of peptides for anti-biofilm activity is a resource-intensive task. In this study, a machine learning-aided design framework is proposed to aid in screening of antibiofilm peptides. An SVM-based binary classification model is developed using amino acid compositions, sequence, and physicochemical properties of peptides as independent features. The physicochemical property-based model developed in this study achieved the highest accuracy of 97.9%, which is found to be substantially higher than the other feature representation techniques. The explainability of this model is performed using SHAP analysis. Results obtained show that amphiphilicity, aliphaticity and cationicity have positive correlation whereas steric parameter, length, and volume have negative correlation with anti-biofilm activity of peptides. The developed model can be accessed freely via web tool: AntiBFP.
更多
查看译文
关键词
Antibiofilm peptides,Amino acid composition,Physicochemical properties,Conjoint triads,Binary classification,Explainable machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要