Evidence of Neuroplasticity: A Robotic Hand Exoskeleton Study for Post-Stroke Rehabilitation

crossref(2020)

引用 0|浏览0
暂无评分
摘要
Abstract Background: A novel electromechanical robotic-exoskeleton was designed in-house for rehabilitation of wrist joint and Metacarpophalangeal (MCP) joint. Objective: The objective was to compare the rehabilitation effectiveness (clinical-scales and neurophysiological-measures) of robotic-therapy training-sessions with dose-matched control in patients with stroke. Methods: An observational pilot study was designed with patients within 2 years of chronicity. Patients received an intervention of 20 sessions of 45-minutes each, five days a week for four-weeks) in Robotic-therapy Group (RG) (n=12) and conventional upper-limb rehabilitation in Control-Group (CG) (n=11). Clinical-scales– Modified Ashworth Scale, Active Range of Motion, Barthel-Index, Brunstrom-stage and Fugl-Meyer scale (Shoulder/Elbow and Wrist/Hand component), and neurophysiological-measures of cortical-excitability (using Transcranial Magnetic Stimulation) –Motor Evoked Potential and Resting Motor-threshold, were acquired pre and post-therapy. Results: RG and CG showed significant improvement in all clinical motor-outcomes (p<0.05) except Modified Ashworth Scale in CG. RG showed significantly higher improvement over CG in Modified Ashworth Scale, Active Range of Motion and Fugl-Meyer (FM) scale and FM Wrist-/Hand component) (p<0.05). Increase in cortical-excitability in ipsilesional-hemisphere was found to be statistically significant in RG over CG, as indexed by decrease in Resting Motor-Threshold and increase in amplitude of Motor Evoked Potential (p<0.05). No significant changes were shown by the contralesional-hemisphere. Interhemispheric RMT-asymmetry evidenced significant changes in RG over CG (p<0.05) indicating increased cortical-excitability in ipsilesional-hemisphere along with interhemispheric changes.Conclusion: Neurophysiological-changes in RG could be most likely a consequence of plastic-reorganization and use-dependent plasticity. Robotic-exoskeleton training could significantly improve motor-outcomes and cortical-excitability in patients with stroke.Registry number: IEC/NP-99/13.03.2015
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要