Explanation and Prediction of Clinical Data with Imbalanced Class Distribution based on Pattern Discovery and Disentanglement

crossref(2020)

引用 0|浏览0
暂无评分
摘要
Abstract Background Statistical data analysis, especially the advanced machine learning (ML) methods, have attracted considerable interest and application in clinical practices. First, the interpretability of the diagnostic/prognostic results will bring confidence to doctors, patients and their relatives in therapeutics and clinical practice. Furthermore, from the clinical aspect, when the datasets are imbalanced in diagnostic categories, the ordinary ML methods might produce results overwhelmed by the majority classes diminishing prediction accuracy. Hence, it is desirable to have a method that could produce explicit transparent and interpretable results in decision-making, even for data with imbalanced groups.Methods In order to interpret the clinical patterns and conduct diagnostic prediction of patients, we present our new method, Pattern Discovery and Disentanglement for Clinical Data Analysis (cPDD), which is able to discover patterns (correlated traits/indicants) and use them to classify clinical data even if the class distribution is imbalanced. In the most general setting, a relational dataset is a large table such that each column represents an attribute (trait/indicant), each row contains a set of attribute values (AVs) of an entity (patient). Compared to the existing pattern discovery approaches, cPDD can discover a small and succinct set of statistically significant high-order patterns from clinical data for interpreting and predicting the disease class of the patients even for small and rare groups.Results Experiments on synthetic and thoracic clinical dataset showed that cPDD can 1) discover fewer patterns compared to other existing pattern discovery methods; 2) allow the users to interpret succinct sets of patterns coming from uncorrelated sources, even the groups are rare/small; and 3) obtain better performance in prediction compared to other interpretable classification approaches.Conclusions In conclusion, cPDD discovers fewer patterns with greater comprehensive coverage to improve the interpretability of patterns discovered. Experimental results on synthetic data validated that cPDD discover all patterns implanted in the data, display them precisely and succinctly with statistical support for interpretation and prediction, a capability which the traditional ML methods lack. The success of cPDD as a novel explainable method in solving the imbalanced class problem shows its great potential to clinical data analysis for years to come.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要