Cryomilled Ni-Co-Se Enables Water Oxidation Electrocatalysts Durable at High Current Densities

crossref(2020)

引用 0|浏览0
暂无评分
摘要
Abstract The oxygen evolution reaction (OER) limits electrocatalysis due to the high overpotential incurred by the poor reaction kinetics; this problem worsens over time if the performance of the OER electrocatalyst diminishes during operation. Here, we report the synthesis of immiscible Ni-Co-Se nanoparticles (<10 nm) for alkaline OER using milling at a cryogenic temperature. Milling at such low temperatures promotes thermodynamically stable nanocrystalline intermetallics with a high density of coordinatively unsaturated active sites. Using operando synchrotron spectroscopy, electron microscopy, and density functional theory we found that during the OER, Se ions leaches out of the nanocrystalline structure activating the electrocatalyst by hydrating and transforming defective Ni and Co sites into active and stable oxyhydroxides. Activated (NiCo)3Se4 electrocatalyst required only an overpotential of 279 mV at 0.5 A.cm-2 and 329 mV at 1 A.cm-2 for 500 hours in 1M KOH. Using anion exchange membrane, we report the lowest cell voltage for an alkaline water electrolyser delivering 2 A.cm-2 at 2 V.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要