Analiza wpływu dodatku wodoru do gazu ziemnego na szczelność połączeń mechanicznych wybranych elementów sieci i instalacji gazowych

crossref(2020)

引用 0|浏览0
暂无评分
摘要
One of the ways to use electrical energy obtained from renewable energy sources is hydrogen production, which produces only energy and water vapour when burned. Adding hydrogen to natural gas and burning it will lower carbon dioxide emission, making this fuel more eco-friendly. Hydrogen added to natural gas can be transported using gas transmission pipelines and can then be provided to industrial and individual consumers via a distribution pipeline network. Due to the much lower density of hydrogen compared to natural gas, it is especially important to maintain the tightness of mechanical connections of network elements and gas installations. This publication presents the results of research carried out at the Oil and Gas Institute-National Research Institute on the influence that adding hydrogen to natural gas has on the tightness of connections of selected elements of gas installations and networks. According to the developed methodology, tests were performed on selected elements of gas networks and gas installations, in which joints were made using differing methods and using various sealing materials. In the case of steel pipes used in gas installations in buildings, joined by means of threaded connections with tightness obtained on the thread, the test samples were prepared with the use of linen hemp with sealing paste, Teflon tapes and threads, and anaerobic adhesives. Samples made of copper pipes were joined with press fittings. Other installation elements - such as flexible hoses, both extensible and non-extensible, and metal hose assemblies - were attached by means of threaded connections with tightness obtained beyond the thread; the sealing material was NBR rubber gaskets and klingerite. The gas network elements were connected by means of threaded connections with hemp and sealing paste, flare fittings, and steel and polyethylene flanges (sealing with a flat gasket made of NBR and klingerite). PE/Steel connectors where also tested. The tests included tightness tests of the prepared samples with the use of methane, and then a mix of 85% methane and 15% hydrogen. The tests on samples with simulated leaks were also performed. Based on the tests and the analysis of the results, it was found that adding the hydrogen to the methane did not cause leaks in the joined elements. In addition, it was found that in the case of leaks appearing in elements of installations or gas networks, the methane-hydrogen mixture flows out faster than methane alone, and in closed rooms this may result in the lower explosion limit being reached in a shorter time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要