In Situ Rb/Sr Geochronology and Stable Isotope Geochemistry Evidence for Neoproterozoic and Paleozoic Fracture-Hosted Fluid Flow and Microbial Activity in Paleoproterozoic Basement, SW Sweden

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS(2023)

引用 0|浏览8
暂无评分
摘要
Recent studies have shown that biosignatures of ancient microbial life exist in mineral coatings in deep bedrock fractures of Precambrian cratons, but such surveys have been few and far between. Here, we report results from southwestern Sweden in an area of 1.6-1.5 Ga Paleoproterozoic rocks heavily reworked by the 1.14-0.96 Ga Sveconorwegian orogeny, a terrane previously scarcely explored for ancient microbial biosignatures. Calcite-pyrite-adularia-illite-coated fractures were analyzed for stable isotopes via Secondary Ion Mass Spectrometry (delta C-13, delta O-18, delta S-34) and in situ Rb/Sr geochronology via Laser-ablation inductively coupled plasma mass spectrometry. The Rb/Sr ages for calcite-adularia and calcite-illite show that several fluid flow events can be discerned (797 +/- 18-769 +/- 7, 391 +/- 5-387 +/- 6, 356 +/- 5-347 +/- 4, and 301 +/- 7 Ma). The delta C-13, delta O-18 and Sr-87/Sr-86 values of different calcite growth zones further confirmed episodic fluid flow. Pyrite delta S-34 values down to -49.9% V-CDT, together with systematically increased delta S-34 from crystal core to rim, suggest formation following microbial sulfate reduction under semi-closed conditions. Assemblages involving MSR-related pyrite generally have Devonian to Permian Rb/Sr ages, indicating an association to extension-related fracturing and fluid mixing during foreland-basin formation linked to Caledonian orogeny in the northwest. An assemblage with an age of 301 +/- 7 Ma is potentially related to Oslo Rift extension, whereas the Neo-Proterozoic ages relate to post-Sveconorwegian extensional tectonics. Remnants of short-chained fatty acids in the youngest calcite coatings further indicate a biogenic origin, while the absence of organic molecules in older calcite is in line with thermal degradation, potentially related to heating during Caledonian foreland basin burial. Plain Language Summary This study investigates mineral coatings in Proterozoic basement fractures of Southwestern Sweden, within the Precambrian Fennoscandian shield, to gain insights into ancient microbial life and paleo-fluid flow. Isotopic signatures of these mineral coatings suggest that microbial sulfate reducers have been present in the system as also indicated by preserved organic molecules. Microanalytical geochronology determinations reveal that the fracture system has been activated several times in the Neoproterozoic, Devonian-Early Carboniferous, and Late Carboniferous/Early Permian. These activations are associated with extension events following the Sveconorwegian and Caledonian orogenies as well as formation of the Oslo Rift. The signs of microbial activity are related to the youngest of these events, post-dating burial in the Caledonian foreland basin, when bedrock temperatures became habitable.
更多
查看译文
关键词
paleoproterozoic basement,stable isotope geochemistry evidence,rb/sr geochronology,neoproterozoic,sw sweden
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要