Electrocatalytic reduction of CO2 to CO by a series of organometallic Re(i)-tpy complexes

DALTON TRANSACTIONS(2023)

引用 0|浏览1
暂无评分
摘要
A series of organometallic Re(I)(L)(CO)(3)Br complexes with 4'-substituted terpyridine ligands (L) has been synthesised as electrocatalysts for CO2 reduction. The complexes' spectroscopic characterisation and computationally optimised geometry demonstrate a facial geometry around Re(I) with three cis COs and the terpyridine ligand coordinating in a bidentate mode. The effect of substitution on the 4'-position of terpyridine (Re1-5) on CO2 electroreduction was investigated and compared with a known Lehn-type catalyst, Re(I)(bpy)(CO)(3)Br (Re7). All complexes catalyse CO evolution in homogeneous organic media at moderate overpotentials (0.75-0.95 V) with faradaic yields of 62-98%. The electrochemical catalytic activity was further evaluated in the presence of three Bronsted acids to demonstrate the influence of the pK(a) of the proton sources. The TDDFT and ultrafast transient absorption spectroscopy (TAS) studies showed combined charge transfer bands of ILCT and MLCT. Amongst the series, the Re-complex containing a ferrocenyl-substituted terpyridine ligand (Re5) shows an additional intra-ligand charge transfer band and was probed using UV-Vis spectroelectrochemistry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要