Internal solitary waves generated by a moving bottom disturbance

JOURNAL OF FLUID MECHANICS(2023)

引用 0|浏览0
暂无评分
摘要
The strongly nonlinear Miyata-Choi-Camassa model under the rigid lid approximation (MCC-RL model) can describe accurately the dynamics of large-amplitude internal waves in a two-layer fluid system for shallow configurations. In this paper, we apply the MCC-RL model to study the internal waves generated by a moving body on the bottom. For the case of the moving body speed U = 1.1c(0), where c(0) is the linear long-wave speed, the accuracy of the MCC-RL results is assessed by comparing with Euler's solutions, and very good agreement is observed. It is found that when the moving body speed increases from U = 0.8c(0) to U = 1.241c(0), the amplitudes of the generated internal solitary waves in front of the moving body become larger. However, a critical moving body speed is found between U = 1.241c(0) and U = 1.242c(0). After exceeding this critical speed, only one internal wave right above the body is generated. When the moving body speed increases from U = 1.242c(0) to U = 1.5c(0), the amplitudes of the internal waves become smaller.
更多
查看译文
关键词
internal solitary waves,bottom
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要