Inconsistent responses of carabid beetles and spiders to land-use intensity and landscape complexity in north-western Europe

BIOLOGICAL CONSERVATION(2023)

引用 1|浏览11
暂无评分
摘要
Reconciling biodiversity conservation with agricultural production requires a better understanding of how key ecosystem service providing species respond to agricultural intensification. Carabid beetles and spiders represent two widespread guilds providing biocontrol services. Here we surveyed carabid beetles and spiders in 66 winter wheat fields in four northwestern European countries and analyzed how the activity density and diversity of carabid beetles and spiders were related to crop yield (proxy for land-use intensity), percentage cropland (proxy for landscape complexity) and soil organic carbon content, and whether these patterns differed between dominant and non-dominant species. <17 % of carabid or spider species were classified as dominant, which accounted for >90 % of individuals respectively. We found that carabids and spiders were generally related to different aspects of agricultural intensification. Carabid species richness was positively related with crop yield and evenness was negatively related to crop cover. The activity density of non-dominant carabids was positively related with soil organic carbon content. Meanwhile, spider species richness and non-dominant spider species richness and activity density were all negatively related to percentage cropland. Our results show that practices targeted to enhance one functionally important guild may not promote another key guild, which helps explain why conservation measures to enhance natural enemies generally do not ultimately enhance pest regulation. Dominant and non-dominant species of both guilds showed mostly similar responses suggesting that management practices to enhance service provisioning by a certain guild can also enhance the overall diversity of that particular guild.
更多
查看译文
关键词
Dominant species,Ecological intensification,Evenness,Natural enemies,Pest control service,Soil organic carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要