Novel In Situ Fabrication of Fe-Doped Zinc Oxide/Tin Sulfide Heterostructures for Visible-Light-Driven Photocatalytic Degradation of Methylene Blue

JOURNAL OF CHEMISTRY(2023)

引用 2|浏览5
暂无评分
摘要
Using a hydrothermal synthesis process, Fe-doped ZnO/SnS nanostructures were created and a variety of analytical methods were used to describe their characteristics. X-ray diffraction patterns were employed to confirm the hexagonal and orthorhombic crystal structures of ZnO and SnS, respectively. Nanorods and nanoparticle clouds were visible in TEM pictures, and XPS investigation verified that the dopant Fe ions were in the 3+ oxidation state. Additionally, absorption spectroscopy revealed a decrease in the energy bandgap with an increase in Fe content, and photoluminescence analysis demonstrated that the ZSF3 sample significantly reduced the rate of recombination of charge carriers. Impressively, the optimized sample (ZSF3) displayed 95.8% more photocatalytic activity during the 120 min degradation of MB dye. This study demonstrated that an easy hydrothermal procedure, carried out at 220 degrees C for 12 hours, may be used to create iron-doped ZnO/SnS nanocomposites. The tunable energy bandgap characteristics of heterogeneous semiconducting materials and the effective charge carrier separation were thought to be the causes of the increased photocatalytic activity. Furthermore, the heterostructure of charge carriers was proposed to facilitate photocatalytic activity when exposed to light.
更多
查看译文
关键词
photocatalytic degradation,oxide/tin sulfide heterostructures,methylene blue,fe-doped,visible-light-driven
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要