Regulating the coordination environment of single-atom catalysts for electrocatalytic CO 2 reduction.

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2023)

引用 0|浏览2
暂无评分
摘要
Electrochemical CO reduction (ECR) through single-atom catalysts (SACs) consisting of transition metals (TMs) anchored on nitrogenated carbon (TM-N-C) has shown promise for carbon neutralization. However, high overpotentials and low selectivity are still issues. Regulating the coordination environment of anchored TM atom is important to address these problems. In this study, we evaluated nonmetal atom (NM = B, O, F, Si, P, S, Cl, As and Se) modified TM (TM = Fe, Co, Ni, Cu and Zn)@N-C catalysts for their ECR to CO performance using density functional theory (DFT) calculations. NM dopants can induce active center distortion and tune electron structure, promoting intermediate formation. Doping heteroatoms can improve ECR to CO activity on Ni and Cu@N but worsen it on Co@N catalysts. Fe@N-F(I), Ni@N-B, Cu@N-O(III), and Zn@N-Cl(II) have excellent activity for ECR to CO, with overpotentials of 0.75, 0.49, 0.43, and 0.15 V, respectively, and improved selectivity. The catalytic performance is related to the intermediate binding strength, as evidenced by d band center, charge density difference, crystal orbital Hamilton population (COHP), and integrated COHP (ICOHP). It is expected that our work can be used as the design principle to guide the synthesis of the high-performance heteroatoms modified SACs for ECR to CO.
更多
查看译文
关键词
Electrochemical CO2 reduction,Single-atom catalysts,Heteroatom doping,DFT calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要