Charge-Transfer Spectroscopy of Ag + (Benzene) and Ag + (Toluene).

JOURNAL OF PHYSICAL CHEMISTRY A(2023)

引用 0|浏览0
暂无评分
摘要
Gas-phase ion-molecule complexes of silver cation with benzene or toluene are produced via laser vaporization in a pulsed supersonic expansion. These ions are mass-selected and photodissociated with tunable UV-visible lasers. In both cases, photodissociation produces the organic cation as the only fragment via a metal-to-ligand charge-transfer process. The wavelength dependence of the photodissociation produces electronic spectra of the charge-transfer process. Broad structureless spectra result from excitation to the repulsive wall of the charge-transfer excited states. Additional transitions are detected correlating to the forbidden S → D silver cation-based atomic resonance and to the HOMO-LUMO excitation on the benzene or toluene ligand. Transitions to these states produce the same molecular cation photofragments produced in the charge-transfer transitions, indicating an unanticipated excited-state curve-crossing mechanism. Spectra measured for these ions are compared to those for ions tagged with argon atoms. The presence of argon causes a significant shift on the energetic positions of these electronic transitions for both Ag(benzene) and Ag(toluene).
更多
查看译文
关键词
spectroscopy,ag<sup>+</sup>benzene,ag<sup>+</sup>toluene,ag<sup>+</sup>benzene,charge-transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要