Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition

INFOMAT(2023)

引用 7|浏览9
暂无评分
摘要
Sodium-ion batteries (SIBs) are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries (LIBs) because of their similar working principle to LIBs, cost-effectiveness, and sustainable availability of sodium resources, especially in large-scale energy storage systems (EESs). Among various cathode candidates for SIBs, Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity, high operating potential, facile synthesis, and environmental benignity. However, there are a series of fatal issues in terms of poor air stability, unstable cathode/electrolyte interphase, and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application, outside to inside of layered oxide cathodes, which severely limit their practical application. This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms, and to provide a comprehensive summary of mainstream modification strategies including chemical substitution, surface modification, structure modulation, and so forth, concentrating on how to improve air stability, reduce interfacial side reaction, and suppress phase transition for realizing high structural reversibility, fast Na+ kinetics, and superior comprehensive electrochemical performance. The advantages and disadvantages of different strategies are discussed, and insights into future challenges and opportunities for layered oxide cathodes are also presented.
更多
查看译文
关键词
sodium‐ion sodium‐ion batteries,layered oxide cathodes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要