NFSP-PLT: Solving Games with a Weighted NFSP-PER-Based Method

ELECTRONICS(2023)

引用 0|浏览18
暂无评分
摘要
Nash equilibrium strategy is a typical goal when solving two-player imperfect-information games (IIGs). Neural fictitious self-play (NFSP) is a popular method to find the Nash equilibrium in IIGs, which is the first end-to-end method used to compute the Nash equilibrium strategy. However, the training of NFSP requires a large number of sample data and the interactive cost of obtaining such data is often very high. Realizing the efficient training of network under limited samples is an urgent problem. In this paper, we first proposed a new NFSP-based method, NFSP with prioritized experience replay (NFSP-PER), to improve the sample training efficiency. Then, a weighted NFSP-PER with learning time (NFSP-PLT) was proposed to control the utilization degree of priority-weighted samples. Furthermore, based on the NFSP-PLT, an adaptive upper-confidence-bound applied to tree (UCT) is used to solve the optimal response strategy, which makes the solving strategy more accurate. Extensive experimental results show that the proposed NFSP-PLT effectively improves the sample learning efficiency compared with the existing works.
更多
查看译文
关键词
game theory,imperfect information,neural fictitious self-play,deep reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要