LAMP2A regulates the balance of mesenchymal stem cell adipo-osteogenesis via the Wnt/β-catenin/GSK3β signaling pathway

JOURNAL OF MOLECULAR MEDICINE-JMM(2023)

引用 0|浏览6
暂无评分
摘要
Chaperone-mediated autophagy (CMA) plays multiple roles in cell metabolism. We found that lysosome-associated membrane protein type 2A (LAMP2A), a crucial protein of CMA, plays a key role in the control of mesenchymal stem cell (MSC) adipo-osteogenesis. We identified a differentially expressed CMA gene (LAMP2) in GEO datasets (GSE4911 and GSE494). Further, we performed co-expression analyses to define the relationships between CMA components genes and other relevant genes including Col1a1, Runx2, Wnt3 and Gsk3β. Mouse BMSCs (mMSCs) exhibiting Lamp2a gene knockdown (LA-KD) and overexpression (LA-OE) were created using an adenovirus system; then we investigated LAMP2A function in vitro by Western blot, Oil Red staining, ALP staining, ARS staining and Immunofluorescence analysis. Next, we used a modified mouse model of tibial fracture to investigate LAMP2A function in vivo. LAMP2A knockdown in mMSCs decreased the levels of osteogenic-specific proteins (COL1A1 and RUNX2) and increased those of the adipogenesis markers PPARγ and C/EBPα; LAMP2A overexpression had the opposite effects. The active-β-catenin and phospho-GSK3β (Ser9) levels were upregulated by LAMP2A overexpression and downregulated by LAMP2A knockdown. In the mouse model of tibial fracture, mMSC-overexpressing LAMP2A improved bone healing, as demonstrated by microcomputed tomography and histological analyses. In summary, LAMP2A positively regulates mMSC osteogenesis and suppresses adipo-osteogenesis, probably via Wnt/β-catenin/GSK3β signaling. LAMP2A promoted fracture-healing in the mouse model of tibial fracture. Key messages • LAMP2 positively regulates the mBMSCs osteogenic differentiation. • LAMP2 negatively regulates the mBMSCs adipogenic differentiation. • LAMP2 regulates mBMSCs osteogenesis via Wnt/β-catenin/GSK3β signaling pathway. • LAMP2 overexpression mBMSCs promote the fracture healing.
更多
查看译文
关键词
signaling,pathway,wnt/β-catenin/gsk3β,adipo-osteogenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要