Analyses of Cell Type-Specific Effects of MicroRNA-298 on Native Protein Expression Via Truncated 3’UTR Hold Translational Promise

Research Square (Research Square)(2021)

引用 0|浏览0
暂无评分
摘要
Abstract Alzheimer’s disease (AD) is marked by neurofibrillary tangles and senile plaques comprising amyloid β (Aβ) peptides. However, specific contributions of different cell types to Aβ deposition remain unknown. Non-coding microRNA (miRNA) play important roles in AD by regulating major proteins involved, like Aβ precursor protein (APP) and β-site APP-cleaving enzyme (BACE1), two key proteins associated with Aβ biogenesis. MiRNAs typically silence protein expression via binding specific sites in 3’- untranslated region (3’UTR) mRNA. MiRNA regulates protein levels in a cell-type specific manner; however, mechanism of miRNA’s variable activities remains unknown. We developed “miRNA-associated native protein expression” (miRnape) assays to determine a natural "UTR limit" for a miRNA’s function in a particular cell type. We report that miR-298 treatment reduced native APP protein levels in an astrocytic but not in a neuronal cell line. From miR-298’s effects on APP-3’UTR activity and native protein levels, we infer that APP 3’-UTR length could explain the differential miR-298’s activity. Such truncated, but natural, 3’-UTR found in a specific cell type provides an opportunity to regulate native protein levels by particular miRNA. Thus, miRNA’s effect tailoring to a specific cell type bypassing another undesired cell type with a truncated 3’-UTR would potentially advance translational research.
更多
查看译文
关键词
native protein expression via,protein expression,type-specific
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要