Research on the Monitoring Ability of Fengyun-Based Quantitative Precipitation Estimates for Capturing Heavy Precipitation: A Case Study of the "7.20" Rainstorm in Henan Province, China

Remote. Sens.(2023)

引用 1|浏览1
暂无评分
摘要
One of the important tasks of the Chinese geostationary and meteorological satellite Fengyun-2 (FY2) series is to provide quantitative precipitation estimates (QPE) with high spatiotemporal resolutions for East Asia. To analyze the monitoring capabilities of FY2-based QPEs in extreme rainfall events, this study comprehensively evaluated and compared the performances of FY-2G and FY-2H QPEs for the "7.20" rainstorm in Henan province, China from 17 July 2021 to 22 July 2021. Three continuous metrics and three categorical metrics were adopted to assess the accuracies of FY-2G and FY-2H QPEs, referenced by gauge observations from 116 meteorological stations. The results show that the FY-2G QPE has lower BIAS (-9.64% for FY-2G, -46.22% for FY-2H) and RMSE (5.83 mm/h for FY-2G, 8.4 mm/h for FY-2H) and higher CC (0.57 for FY-2G, 0.24 for FY-2H) than FY-2H QPE in this rainstorm event. Moreover, the FY-2G QPE is not only more consistent with the ground reference with respect to the rainfall amount, but also has higher detecting capability in the "7.20" rainstorm event when compared with the FY-2H QPE. The FY-2G QPE presented a higher capability to correctly capture the precipitation event for the "7.20" rainstorm because of higher POD (probability of detection) and CSI (critical success index) relative to FY-2H QPE, especially in complex topography. From the spatial distribution of precipitation amount, the FY-2G QPE captured the rainstorm center of extreme precipitation more accurately relative to the latest FY-2H product. On the other hand, the previous generation of FY-2G QPE was closer to the continuous rainfall process and precipitation duration with ground observations than the latest FY-2H QPE. Therefore, the precipitation retrieval algorithm of FY-2H QPE still had room to improve. It is necessary to introduce error correction algorithms, especially in complex topography for rainstorm events.
更多
查看译文
关键词
quantitative precipitation estimates,capturing heavy precipitation,rainstorm,henan province,fengyun-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要