Potential applications of Fe3+-activated Sr9Al6O18 nanophosphors for fingerprint detection, oxidative stress, and thrombosis treatment

Biomaterials Advances(2023)

引用 0|浏览7
暂无评分
摘要
This study reports on the synthesis of Fe3+-activated Sr9Al6O18 nanophosphors (SAO:Fe NPs) using a simple solution combustion process, which emits a pale green light and possesses excellent fluorescence properties. An in-situ powder dusting method was utilized to extract unique ridge features of latent fingerprints (LFPs) on various surfaces using ultra-violet 254 nm excitation. The results showed that SAO:Fe NPs possess high contrast, high sensitivity, and no background interference, enabling the observation of LFPs for longer periods. Poroscopy, which is the examination of sweat pores on the skin's papillary ridges, is important in the identification process, and the YOLOv8x program based on deep convolutional neural networks was used to study the features visible in FPs. The potential of SAO:Fe NPs to ameliorate oxidative stress and thrombosis was analyzed. The results showed that SAO:Fe NPs have antioxidant properties by scavenging 2,2-diphenylpicrylhydrazyl (DPPH) and normalized the stress markers in NaNO2-induced oxidative stress in Red Blood Cells (RBC). In addition, SAO:Fe inhibited platelet aggregation induced by adenosine diphosphate (ADP). Therefore, SAO:Fe NPs may have potential applications in advanced cardiology and forensic sciences. Overall, this study highlights the synthesis and potential applications of SAO:Fe NPs, which can enhance the sensitivity and specificity of fingerprint detection and provide insights into developing novel treatments for oxidative stress and thrombosis.
更多
查看译文
关键词
Latent fingerprints detection, Nanophosphors, Combustion method, Thrombosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要