Recent advances of Pluronic-based copolymers functionalization in biomedical applications

Biomaterials Advances(2023)

引用 0|浏览7
暂无评分
摘要
The design of polymeric biocompatible nanomaterials for biological and medical applications has received special attention in recent years. Among different polymers, the triblock type copolymers (EO)x(PO)y(EO)x or Pluronics® stand out due its favorable characteristics such as biocompatibility, low tissue adhesion, thermosensitivity, and structural capacity to produce different types of macro and nanostructures, e.g. micelles, vesicles, nanocapsules, nanospheres, and hydrogels. However, Pluronic itself is not the “magic bullet” and its functionalization via chemical synthesis following biologically oriented design rules is usually required aiming to improve its properties. Therefore, this paper presents some of the main publications on new methodologies for synthetic modifications and applications of Pluronic-based nanoconstructs in the biomedical field in the last 15 years. In general, the polymer modifications aim to improve physical-chemical properties related to the micellization process or physical entrapment of drug cargo, responsive stimuli, active targeting, thermosensitivity, gelling ability, and hydrogel formation. Among these applications, it can be highlighted the treatment of malignant neoplasms, infectious diseases, wound healing, cellular regeneration, and tissue engineering. Functionalized Pluronic has also been used for various purposes, including medical diagnosis, medical imaging, and even miniaturization, such as the creation of lab-on-a-chip devices. In this context, this review discusses the main scientific contributions to the designing, optimization, and improvement of covalently functionalized Pluronics aiming at new strategies focused on the multiple areas of the biomedical field.
更多
查看译文
关键词
copolymers functionalization,pluronic-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要