Inactivation of SGS3 as Molecular Basis for RNA Silencing Suppression by TYLCV V2

crossref(2013)

引用 0|浏览0
暂无评分
摘要
The Israeli isolate of Tomato yellow leaf curl geminivirus(TYLCV-Is) is a major tomato pathogen, causing extensive crop losses in Israel and in the south-eastern U.S. Yet, little is known about the molecular mechanisms of its interaction with tomato cells. One of the most interesting aspects of such interaction is how the invading virus counteracts the RNA silencing response of the plant. In the former BARD project, we have shown that TYLCV-Is V2 protein is an RNA silencing suppressor, and that this suppression is carried out via the interaction of V2 with the SGS3 component of the plant RNA silencing machinery. This reported project was meant to use our data as a foundation to elucidate the molecular mechanism by which V2 affects the SGS3 activity. While this research is likely to have an important impact on our understanding of basic biology of virus-plant interactions and suppression of plant immunity, it also will have practical implications, helping to conceive novel strategies for crop resistance to TYLCV-Is. Our preliminary data in regard to V2 activities and our present knowledge of the SGS3 function suggest likely mechanisms for the inhibitory effect of V2 on SGS3. We have shown that V2 possess structural and functional hallmarks of an F-box protein, suggesting that it may target SGS3 for proteasomal degradation. SGS3 contains an RNA-binding domain and likely functions to protect the cleavage produces of the primary transcript for subsequent conversion to double-stranded forms; thus, V2 may simply block the RNA binding activity of SGS3. V2 may also employ a combination of these mechanisms. These and other possibilities were tested in this reported project.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要