Entropic contribution of ACE2 glycans to RBD binding

BIOPHYSICAL JOURNAL(2023)

引用 1|浏览14
暂无评分
摘要
The spike protein of the SARS-CoV-2 virus (the causative agent of COVID-19) recognizes the host cell by binding to the peptidase domain (PD) of the extracellular receptor angiotensin-converting enzyme 2 (ACE2). A variety of carbohydrates could be attached to the six asparagines in the PD, resulting in a heterogeneous population of ACE2 glycoforms. Experiments have shown that the binding affinity of glycosylated and deglycosylated ACE2 to the virus is virtually identical. In most cases, the reduction in glycan size correlates with stronger binding, which suggests that volume exclusion, and hence entropic forces, determine the binding affinity. Here, we quantitatively test the entropy-based hypothesis by developing a lattice model for the complex between ACE2 and the SARS-CoV-2 spike protein receptor-binding domain (RBD). Glycans are treated as branched polymers with only volume exclusion, which we justify using all-atom molecular dynamics simulations in explicit water. We show that the experimentally measured changes in the ACE2-RBD dissociation constants for a variety of engineered ACE2 glyco-forms are in reasonable agreement with our theory, thus supporting our hypothesis. However, a quantitative recovery of all the experimental data could require weak attractive interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要