Optimization and Development of ITO-Free Plasmonic Gold Nanoparticles Assisted Inverted Organic Solar Cells

crossref(2022)

引用 0|浏览0
暂无评分
摘要
Abstract This paper focuses on the fabrication of an ITO-free plasmonic assisted inverted organic solar cell (OSC) constituting aluminium doped zinc oxide (AZO) as front cathode and ultraviolet (UV) filtering layer. The gold nanoflowers are introduced in the device to increase the efficiency using localized surface plasmon resonance (LSPR) shown by plasmonic nanoparticles. We used GPVDM software to first optimize the cell, based on the geometry AZO/ZnO/PTB7:PC71BM/MoO3/Ag where AZO acts as the transparent conducting oxide (TCO) cathode and UV filter, zinc oxide (ZnO) behaves as the electron transport layer (ETL), Thieno[3,4 b]thiophene-alt-benzodithiophene: [6,6]-phenyl C71 butyric acid methyl ester (PTB7: PC71BM) mixture as the active layer, molybdenum trioxide (MoO3) as the hole transport layer (HTL) and silver (Ag) serves as the anode layer. By modelling, we find that the optimized device with maximum power conversion efficiency (PCE) includes 10 nm thick HTL, 200 nm thick photoactive layer and ETL thickness of 30 nm. Using the optimized thicknesses, we have fabricated three structurally identical inverted OSCs: first having AZO as the front cathode (AZO based device); second with ITO as the front cathode (ITO based control device); third includes AZO as cathode and plasmonic gold nanoflowers embedded inside the active layer (plasmonic assisted AZO based device). The AZO based device exhibited the PCE value of 6.19%, slightly less than the efficiency of 6.83% for ITO based control device. However, a remarkable increase in the lifetime was achieved for AZO based device under UV assisted acceleration ageing test. The stability enhancement of AZO based device is because of the UV filtering properties of AZO which prevent degradation in the device due to UV exposure. Also, the PCE of AZO based device was further enhanced to 7.01% when plasmonic gold nanoparticles were included in the active layer. This work provides a feasible way to develop an ITO free plasmonic assisted inverted organic solar cell to achieve cost-effectiveness, high efficiency and stability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要