DL_FFLUX: a parallel, quantum chemical topology force field

crossref(2021)

引用 0|浏览0
暂无评分
摘要
DL_FFLUX performs molecular dynamics for flexible molecules endowed with polarisable QTAIM atomic multipole moments, predicted by the machine learning method Gaussian Process Regression. Newly optimised and parallelised using domain-decomposition MPI, DL_FFLUX now operates in reasonable time frames. DL_FFLUX is delivered as an add-on to the widely distributed molecular dynamics code DL_POLY 4.08. For the systems studied here (10**3-10**5 atoms), DL_FFLUX adds minimal computational cost to the standard DL_POLY package. The parallel DL_FFLUX preserves the quality of the scaling of the MPI implementation in standard DL_POLY. For the first time it is feasible to use the full capability of DL_FFLUX to study systems that are large enough to be of real world interest. For example, a fully flexible, high-rank polarised (up to and including quadrupole moments) 1 ns simulation of a system of 10,125 atoms (3,375 water molecules) takes 30 hours (wall time) on 18 cores.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要