Fully kinetic simulations of the near-Sun solar wind plasma: turbulence, reconnection, and particle heating

crossref(2022)

引用 0|浏览2
暂无评分
摘要
<p>We model the development of plasma turbulence in the near-Sun solar wind with high-resolution fully-kinetic particle-in-cell (PIC) simulations, initialised with plasma conditions measured by Parker Solar Probe during its first solar encounter (ion and electron plasma beta &#8804; 1 and a large amplitude of the turbulent fluctuations). The power spectra of the plasma and electromagnetic fluctuations are characterized by multiple power-law intervals, with a transition and a considerable steepening in correspondence of the electron scales. In the same range of scales, the kurtosis of the magnetic fluctuations is observed to further increase, hinting at a higher level of intermittency. We observe a number of electron-only reconnection events, which are responsible for an increase of the electron temperature in the direction parallel to the ambient field. The total electron temperature, however, exhibits only a small increase due to the cooling of electrons in the perpendicular direction, leading to a strong temperature anisotropy. We also analyse the power spectra of the different terms of the electric field in the generalised Ohm&#8217;s law, their linear and nonlinear components, and their alignment, to get a deeper insight on the nature of the turbulent cascade. Finally, we compare our results with those from hybrid simulations with the same parameters, as well as with spacecraft observations.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要