Effect of surfactant concentration on the decomposition rate of alkaline activated persulfate

crossref(2022)

引用 0|浏览0
暂无评分
摘要
<p>Hydrocarbon contamination is among the most frequent sources of soil and water environmental impacts. Many remediation methods have been implemented to clean up the contaminated environment so far. In-Situ Chemical Oxidation has attracted attention as it has shown efficiency in contaminants removal and cost-effectivity. In addition, soil washing by surfactant foam has been recently proven as a promising method. The combination of these two methods can take the advantage of oxidation while eliminating the challenges regarding the poor distribution of treatment fluid in a heterogeneous porous media. The ultimate goal of this study is to use surfactant foam for delivering oxidant (persulfate) through diesel-contaminated soil in permafrost. However, the interaction between the surfactant and the oxidant needs to be studied first. A better understanding of the impact of surfactants and oxidants on each other can lead to an optimized process. At the first stage of this study, different concentrations of surfactant solutions (sodium dodecyl sulfate: cocamidopropyl betaine in a mass ratio of 1:1) were mixed with a constant persulfate concentration activated with alkali, in absence of hydrocarbon. The preliminary results showed that the initial concentration of the oxidant has no significant effect on its decomposition rate. Also, as the concentration of surfactant was increased above the Critical Micellar Concentration (CMC), the persulfate decomposition rate decreased, likely due to the formation of micelles. However, as the micelles started to be destroyed, the decomposition rate of the oxidant increased gradually and the highest rate was observed when the concentration of surfactant was close to the CMC. When no micelle was left in the solution, the decomposition rate of the oxidant waned to a low value. Thus, coupling the surfactant and the oxidant can be effective for the degradation of hydrocarbon contaminants. Micelles bring part of the hydrocarbon into the aqueous phase and then the micelles are destroyed by the oxidant that can also degrade the hydrocarbon effectively over time.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要