Adjoint-Based High Fidelity Concurrent Aerodynamic Design Optimization of Wind Turbine

crossref(2022)

引用 0|浏览1
暂无评分
摘要
Abstract. The aim of this study is to contribute towards the development of an open source MDO (multidisciplinary design optimization) platform DAFoam (https://github.com/DAFoam) in general and develop, implement, and integrate various technologies for wind turbine MDO for the energy community in particular, and to implement hi-fidelity concurrent multi-disciplinary the aerodynamic design optimization in terms of five different schemes as well as to contribute to the development of the opensource MDO software, DAFoam. To evaluate novel turbine designs, the wind energy sector extensively depends on computational fluid dynamics (CFD). To use CFD in the design optimization process, where lower-fidelity approaches like blade element momentum (BEM) are more popular, but new tools to increase the accuracy must be developed as the latest wind turbines are larger and aerodynamics and structural dynamics become more complex. In the present study, a new concurrent aerodynamic shape optimization approach towards multidisciplinary design optimization (MDO) that uses a Reynolds-averaged Navier Stokes solver in conjunction with a numerical optimization methodology is introduced. A multidisciplinary design optimization tool called DAFoam is used for the NREL phase VI turbine as baseline geometry to conduct extensive aerodynamic design optimizations such as cross-sectional shape, pitch angle, twist, chord length, and dihedral optimization. Pointwise, a commercial mesh generator, is used to create the numerical meshes. As the adjoint approach is strongly reliant on the mesh quality, up to 17.8 million mesh cells were employed during the mesh convergence and result validation processes, whereas 2.65 million mesh cells were used throughout the design optimization due to the computational cost. The nonlinear optimizer SNOPT is used for the optimization process in the adjoint solver. The torque in the tangential direction is the optimization's merit function and excellent results are achieved, which shows the promising prospect of applying this approach for transient MDO. This work represents the first attempt to implement DAFoam for wind turbine aerodynamic design optimization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要