Abstract 3575: Differential dynamics of response at single cell resolution between axi-cel and tisa-cel CAR-T therapy in refractory B-cell lymphomas

Cancer Research(2022)

引用 0|浏览1
暂无评分
摘要
Abstract Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B-cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment, across the commercially available CAR-T products with differing designs. Known failure mechanisms such as antigen loss account for only a fraction of cases without durable responses, and this knowledge gap has limited advances in CAR-T engineering and optimal targeting to patients. We hypothesized that characterization of the transcriptional programs and temporal evolution of CAR-T and host immune cell populations could provide novel insights into the basis of clinical response to CAR-T cell therapy for B cell lymphoma. We performed 10X single-cell RNA sequencing on serial samples collected from 32 individuals with high grade B cell lymphoma treated with the two first FDA-approved CD19 CAR-T products: axicabtagene ciloleucel (axi-cel, utilizing a CD28z costimulatory domain) and tisagenlecleucel (tisa-cel, with a 4-1BB domain). We analyzed 106 samples, including pre-infusion blood samples, infusion product, and post-infusion T cells sorted by flow cytometry into CAR+ and CAR- populations. Analyzing 602,577 single-cell transcriptomes, we discerned major differences in the dynamics of response of the two products. Tisa-cel responders showed dramatic expansion of CD8+ T cells at day 7 after infusion, which represented less than 10% of cells in the product. Conversely, CD8+ T cells in products of non-responders failed to expand to the same degree post-infusion and had a more effector- than memory-like T cell phenotype. In one tisa-cel–treated patient who had no CD8+ T cell expansion after initial infusion and relapsed at 6 months post-infusion, re-treatment with a second dose of the same product led to a durable response and was associated with greater CD8+ T cell expansion as well as a shift in CD4+ T phenotype from cytotoxic to helper. In contrast, axi-cel responders had pre-expanded effector populations distributed more heterogeneously among CD4+ and CD8+ T cells. Finally, we identified nominal elevations in CAR-T regulatory cells (CAR-Tregs) among both axi-cel and tisa-cel non-responders in our dataset, which we confirmed in an external dataset. These small increases in CAR-Tregs were sufficient to uniformly suppress conventional CAR-T cell expansion and drive late relapses in an in vivo mouse model of lymphoma after treatment with CARs with either CD28z or 4-1BB co-stimulatory domains. In summary, this represents the largest CAR-T scRNAseq cohort established thus far and provides important insights into (i) the temporal dynamics of a successful CAR-T response, (ii) the molecular phenotypes of CAR-T cells with different costimulatory domains, and (iii) the capacity for small increases in CAR-Tregs to drive relapse. Citation Format: Nicholas J. Haradhvala, Mark B. Leick, Katie Maurer, Satyen Gohil, Rebecca C. Larson, Estelle Yao, Matthew J. Frigault, Shuqiang Li, Kenneth J. Livak, Kahn Rhrissorrakrai, Filippo Utro, Chaya Levovitz, Raquel A. Jacobs, Kara Slowik, Brian P. Danysh, Laxmi Parida, Catherine J. Wu, Gad Getz, Marcela V. Maus. Differential dynamics of response at single cell resolution between axi-cel and tisa-cel CAR-T therapy in refractory B-cell lymphomas [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3575.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要