The Unmanned Multipurpose Airborne Sensor Carrier MASC-V for Offshore Wind Energy Research

Ines Weber,Andreas Platis,Kjell zum Berge,Martin Schön, Jakob Boventer, Matteo Bamati, Vasileios Savvakis, Gabriela Miranda Garcia, Mosaab Sajidi, Yongtan Wang,Jens Bange

crossref(2022)

引用 0|浏览2
暂无评分
摘要
<p>The Multipurpose Airborne Sensor Carrier (MASC) is a fixed-wing unmanned aircraft system (UAS) that has been continuously developed and used for in-situ, high-resolution flight measurements of atmospheric variables such as wind, temperature, humidity as well as trace gas and particle concentrations by the Environmental Physics group at University of T&#252;bingen. The most recent innovation in the MASC-series is the MASC-V type vertical takeoff and landing UAS. It has been designed in cooperation with ElevonX d.o.o.. Compared to its predecessor, MASC-3, it can automatically takeoff and land on small patches of land while carrying an identical atmospheric measurement payload. This capability, complemented by an enhanced safety and operational concept, allows for deployment in offshore applications. Particularily, MASC-V has demonstrated safe operation beyond visual line of sight (BVLOS) from the remote safety pilot in offshore applications within the EUs new legal framework introduced in 2020.</p><p>Before its first offshore mission, MASC-V underwent a system validation against a meteorological tower at the German Weather Service (DWD) Observatory site at Falkenberg, Germany. Offshore measurements were conducted from the German offshore island Heligoland at the Testfield for Maritime Technologies in cooperation with the Fraunhofer Institute for Applied Material Science in September 2021. The goal of the Heligoland campaign was to validate the remote sensing of sea surface wind measurements by Synthetic Aperture Radar (SAR) satellites of the Sentinel-1 formation at low flight altitudes (20 m - 30 m). SAR satellites can deliver detailed wind data over large areas such as the German Bight including for example wind farm wake effects. Direct validation of these results is difficult with other in-situ techniques. Buoys and measurement towers or platforms can provide stationary data. Aerial measurements with manned aircraft are only possible at higher altitudes. The new UAS data provide the first aerial in-situ SAR validation measurement at low altitude. Additionally, we have demonstrated the capabilities of VTOL fixed-wing UAS for vertical profiling as well as to operate tens of kilometers away from ground personell over open water.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要