Additive GaN Solid Immersion Lenses for Enhanced Photon Extraction Efficiency from Diamond Color Centers

ACS PHOTONICS(2023)

引用 0|浏览19
暂无评分
摘要
Effective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development. The micro-lenses are integrated in a noninvasive manner, as they are added on top of the unstructured diamond surface and bonded by van der Waals forces. For emitters at 5 mu m depth, we find approximately 2x improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.
更多
查看译文
关键词
diamond,nitrogen vacancy,additive GaN micro-optics,transfer printing,quantum systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要