LightRidge: An End-to-end Agile Design Framework for Diffractive Optical Neural Networks

PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS 2023, VOL 4(2023)

引用 0|浏览51
暂无评分
摘要
To lower the barrier to diffractive optical neural networks (DONNs) design, exploration, and deployment, we propose LightRidge, the first end-to-end optical ML compilation framework, which consists of (1) precise and differentiable optical physics kernels that enable complete explorations of DONNs architectures, (2) optical physics computation kernel acceleration that significantly reduces the runtime cost in training, emulation, and deployment of DONNs, and (3) versatile and flexible optical system modeling and user-friendly domain-specific-language (DSL). As a result, LightRidge framework enables efficient end-to-end design and deployment of DONNs, and significantly reduces the efforts for programming, hardware-software codesign, and chip integration. Our results are experimentally conducted with physical optical systems, where we demonstrate: (1) the optical physics kernels precisely correlated to low-level physics and systems, (2) significant speedups in runtime with physics-aware emulation workloads compared to the state-of-the-art commercial system, (3) effective architectural design space exploration verified by the hardware prototype and on-chip integration case study, and (4) novel DONN design principles including successful demonstrations of advanced image classification and image segmentation task using DONNs architecture and topology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要