Role of topological charges in the nonlinear-optical response from Weyl semimetals

PHYSICAL REVIEW B(2023)

引用 1|浏览5
暂无评分
摘要
The successful realization of the topological Weyl semimetals has revolutionized contemporary physics. In recent years, multi-Weyl semimetals, a class of topological Weyl semimetals, has attracted broad interest in condensed-matter physics. Multi-Weyl semimetals are emerging topological semimetals with nonlinear anisotropic energy dispersion, which is characterized by higher topological charges. In this study, we investigate how the topological charge affects the nonlinear optical response from multi-Weyl semimetals. It has been observed that the laser-driven electronic current is characteristic of the topological charge, and the laser polarization's direction influences the current's direction and amplitude. In addition, the anomalous current, perpendicular to the laser's polarization, carries a distinct signature of the topological charges and encodes the information about the parity and amplitude of the nontrivial Berry curvature. We show that the anomalous current associated with the anomalous Hall effect remains no longer proportional to the topological charge at higher laser intensity -- a significant deviation from the linear response theory. High-harmonic spectroscopy is employed to capture the distinct and interesting features of the currents in multi-Weyl semimetals where the topological charge drastically impacts the harmonics' yield and energy cutoff.
更多
查看译文
关键词
weyl semimetals,nonlinear optical response,topological charges
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要