In Situ Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration

ACS Applied Materials & Interfaces(2022)

引用 0|浏览0
暂无评分
摘要
A critical-sized bone defect, which cannot be repaired through self-healing, is a major challenge in clinical therapeutics. The combination of biomimetic hydrogels and nano-hydroxyapatite (nano-HAP) is a promising way to solve this problem by constructing an osteogenic microenvironment. However, it is challenging to generate nano-HAP with a similar morphology and structure to that of natural bone, which limits the improvement of bone regeneration hydrogels. Inspired by our previous works on organic-inorganic cocross-linking, here, we built a strong organic-inorganic interaction by cross-linking periosteum-decellularized extracellular matrix and calcium phosphate oligomers, which ensured the in situ mineralization of bone-like nano-HAP in hydrogels. The resulting biomimetic osteogenic hydrogel (BOH) promotes bone mineralization, construction of immune microenvironment, and angiogenesis improvement in vitro. The BOH exhibited acceleration of osteogenesis in vivo, achieving large-sized bone defect regeneration and remodeling within 8 weeks, which is superior to many previously reported hydrogels. This study demonstrates the important role of bone-like nano-HAP in osteogenesis, which deepens the understanding of the design of biomaterials for hard tissue repair. The in situ mineralization of bone-like nano-HAP emphasizes the advantages of inorganic ionic oligomers in the construction of organic-inorganic interaction, which provides an alternative method for the preparation of advanced biomimetic materials.
更多
查看译文
关键词
hydrogel,biomimetic mineralization,bone-like
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要