FLASH: Heterogeneity-Aware Federated Learning at Scale

IEEE TRANSACTIONS ON MOBILE COMPUTING(2024)

引用 13|浏览97
暂无评分
摘要
Federated learning (FL) becomes a promising machine learning paradigm. The impact of heterogeneous hardware specifications and dynamic states on the FL process has not yet been studied systematically. This paper presents the first large-scale study of this impact based on real-world data collected from 136k smartphones. We conducted extensive experiments on our proposed heterogeneity-aware FL platform namely FLASH, to systematically explore the performance of state-of-the-art FL algorithms and key FL configurations in heterogeneity-aware and -unaware settings, finding the following. (1) Heterogeneity causes accuracy to drop by up to 9.2% and convergence time to increase by 2.32x. (2) Heterogeneity negatively impacts popular aggregation algorithms, e.g., the accuracy variance reduction brought by q-FedAvg drops by 17.5%. (3) Heterogeneity does not worsen the accuracy loss caused by gradient-compression algorithms significantly, but it compromises the convergence time by up to 2.5x. (4) Heterogeneity hinders client-selection algorithms from selecting wanted clients, thus reducing effectiveness. e.g., the accuracy increase brought by the state-of-the-art client-selection algorithm drops by 73.9%. (5) Heterogeneity causes the optimal FL hyper-parameters to drift significantly. More specifically, the heterogeneity-unaware setting favors looser deadline and higher reporting fraction to achieve better training performance. (6) Heterogeneity results in non-trivial failed clients (more than 10%) and leads to participation bias (the top 30% of clients contribute 86% of computations). Our FLASH platform and data have been publicly open sourced.
更多
查看译文
关键词
Federated learning,heterogeneity,impact analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要