Legionellapara-effectors target chromatin and promote bacterial replication

Daniel Schator,Sonia Mondino,Jérémy Berthelet, Cristina Di Silvestre, Mathilde Ben Assaya,Christophe Rusniok,Fernando Rodrigues-Lima, Annemarie Wehenkel,Carmen Buchrieser,Monica Rolando

bioRxiv (Cold Spring Harbor Laboratory)(2022)

引用 0|浏览0
暂无评分
摘要
Legionella pneumophilareplicates intracellularly by secreting effectorsviaa type IV secretion system. One of these effectors is a eukaryotic methyltransferase (RomA) that methylates K14 of histone H3 (H3K14me3) to counteract host immune responses. However, it is not known howL. pneumophilainfection catalyses H3K14 methylation as this residue is usually acetylated. Here we show thatL. pneumophilasecretes a eukaryotic-like histone deacetylase (LphD) that specifically targets H3K14ac and works in synergy with RomA. Both effectors target host chromatin and bind the HBO1 histone acetyltransferase complex that acetylates H3K14. Full activity of RomA is dependent on the presence of LphD as H3K14 methylation levels are significantly decreased in a ΔlphDmutant. The dependency of these two chromatin-modifying effectors on each other is further substantiated by mutational and virulence assays revealing that the presence of only one of these two effectors impairs intracellular replication, while a double knockout (ΔlphDΔromA) can restore intracellular replication. Uniquely, we present evidence for “para-effectors”, an effector pair, that actively and coordinately modify host histones to hijack the host response. The identification of epigenetic marks modulated by pathogens opens new vistas for the development of innovative therapeutic strategies to counteract bacterial infection and strengthening host defences.
更多
查看译文
关键词
chromatin,para-effectors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要