Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction

Nano Research Energy(2023)

引用 13|浏览24
暂无评分
摘要
Morphology engineering has been developed as one of the most widely used strategies for improving the performance of electrocatalysts. However, the harsh reaction conditions and cumbersome reaction steps during the nanomaterials synthesis still limit their industrial applications. Herein, one-dimensional (1D) novel-segmented PtTe porous nanochains (PNCs) were successfully synthesized by the template methods assisted by Pt autocatalytic reduction. The PtTe PNCs consist of consecutive mesoporous architectures that provide a large electrochemical surface area (ECSA) and abundant active sites to enhance methanol oxidation reaction (MOR). Furthermore, 1D nanostructure as a robust sustaining frame can maintain a high mass/charge transfer rate in a long-term durability test. After 2,000 cyclic voltammetry (CV) cycles, the ECSA value of PtTe PNCs remained as high as 44.47 m2·gPt–1, which was much larger than that of commercial Pt/C (3.95 m2·gPt–1). The high catalytic activity and durability of PtTe PNCs are also supported by CO stripping test and density functional theory calculation. This autocatalytic reduction-assisted synthesis provides new insights for designing efficient low-dimensional nanocatalysts.
更多
查看译文
关键词
porous ptte nanochains,methanol,reduction-assisted
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要