Determination of Optimal Line-Heating Conditions for Flatness Control of Wind Tower Blocks Using Strain as Direct Boundary Method

Materials(2022)

引用 0|浏览0
暂无评分
摘要
The wind tower block is welded with the flange to assemble the wind tower. The inherent strain due to local heating and cooling of the weld affects the flatness of the flange. Therefore, line heating is performed to satisfy the design criteria of the flange flatness, but the work variables depend on the operator’s empirical judgment. This study proposed a method to determine the optimum linear heating conditions to control the welded flatness of wind tower blocks and flanges. A proposed method uses the inherent strain method, a simple analysis method, and the optimization is performed based on the deformation superposition method. The changes in flange flatness due to welding and single-point heating were calculated. Then, the flatness change due to single-point heating is superimposed with a scale factor, which represents the magnitude of line heating, and is added to the flatness change due to welding. Using the optimization procedure, the line heating conditions used to derive the flatness that satisfies the design criteria were derived and applied to the analytical model for verification.
更多
查看译文
关键词
flatness,tilt angle,line heating,strain as direct boundary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要