Evaluation of the Regions of Attraction of Higher-Dimensional Hyperbolic Systems Using Extended Dynamic Mode Decomposition

AUTOMATION(2023)

引用 0|浏览1
暂无评分
摘要
This paper provides the theoretical foundation for the approximation of the regions of attraction in hyperbolic and polynomial systems based on the eigenfunctions deduced from the data-driven approximation of the Koopman operator. In addition, it shows that the same method is suitable for analyzing higher-dimensional systems in which the state space dimension is greater than three. The approximation of the Koopman operator is based on extended dynamic mode decomposition, and the method relies solely on this approximation to find and analyze the system's fixed points. In other words, knowledge of the model differential equations or their linearization is not necessary for this analysis. The reliability of this approach is demonstrated through two examples of dynamical systems, e.g., a population model in which the theoretical boundary is known, and a higher-dimensional chemical reaction system constituting an original result.
更多
查看译文
关键词
regions of attraction,extended dynamic mode decomposition,Koopman operator,nonlinear systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要