Relative importance of magmatic and hydrothermal processes for economic Nb-Ta-W-Sn mineralization in a peraluminous granite system: The Zhaojinggou rare-metal deposit, northern China

GEOLOGICAL SOCIETY OF AMERICA BULLETIN(2023)

引用 2|浏览2
暂无评分
摘要
Highly evolved granitic melts typically experience late-stage melt-melt and fluid-melt immiscibility as well as fluid-melt and fluidrock interaction. These processes are particularly important in the formation of deposits of the rare metals Nb, Ta, W, and Sn. We document the relation between immiscibility and alteration processes and the partitioning behavior of rare metals for the Zhaojinggou rare-metal deposit of northern China. This deposit shows a systematic change from a magmatic to a hydrothermal system, including the reaction of the exsolved fluid with earlier crystallized granite and the formation of late-stage quartz veins. The magmatic stage (Stage I) includes biotite alkali-feldspar granite (BAG) with moderate Nb-Ta mineralization. Extreme fractional crystallization of BAG eventually resulted in melt-melt immiscibility and the separation of a hydrosaline melt. Fractional crystallization of this hydrosaline albite granite (AG) melt finally exsolved a magmatic fluid. Therefore, the magmatic-hydrothermal transition (Stage II) includes a melt-dominated Stage IIa with strong Nb-Ta-Sn mineralization in AG and a fluid-dominated Stage IIb with minor Nb-TaSn mineralization in muscovite and biotite greisen. Late hydrothermal processes (Stage III) formed quartz veins with important W mineralization. There are several texturally and chemically distinct generations of cassiterite and columbite-group minerals (CGM) in BAG and AG reflecting crystallization from an evolving magma. The porous and patchy-zoned reaction rims of tantalite-(Mn) and wodginite on CGM in AG are the result of fluid-melt interaction. Texture and compositions show that wolframite in AG is hydrothermal and formed through interaction of early exsolved magmatic fluids with the host granite. CGM and cassiterite in the biotite greisen and Ta-rutile in the muscovite greisen, as well as wolframite and scheelite in quartz veins that formed when fluid-rock interaction reduced the availability of H+ or F- or the temperature of the fluid decreased. The distribution and importance of mineralization demonstrate that Nb, Ta, W, and Sn strongly partitioned into the hydrosaline melt during melt-melt immiscibility and that W partitioned into the magmatic fluid during fluid-melt immiscibility. Exsolved magmatic fluids interacted with earlier crystallized rocks mobilizing rare (Nb, Ta, and Sn) and base (Fe and Ti) metals from Li-Fe mica, providing the ore elements for subordinate Nb-Ta-Sn mineralization in AG and in biotite and muscovite greisen. Thus, magmatic processes (with later metal redistribution by magmatic fluids) dominantly control economic Nb-Ta-Sn mineralization, whereas hydrothermal processes mainly control the formation of economic W mineralization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要