Environmental impact assessment and techno-economic analysis of a hybrid microgrid system

Green Energy(2023)

引用 0|浏览5
暂无评分
摘要
Microgrids (MGs) are playing an important role in the maximum utilization of distributed energy resources. The optimal economic operation and low-carbon electricity generation can enhance MG effectiveness. This chapter presents the results of a solar-photovoltaic (PV)-driven islanded MG's techno-economic optimization analysis and environmental life cycle assessment (LCA) to achieve economically and environmentally superior performance. A net present cost (NPC)-based simulation for optimal sizing of the MG is proposed. A novel life cycle inventory (LCI) is developed to evaluate the impacts of the MG under 21 mid-point indicators and 3 end-point indicators by the ReCiPe 2016 method, and the greenhouse gas (GHG) emissions are evaluated by the IPCC approach. Sensitivity analysis is carried out to verify the effects of three different batteries and five different PV modules on all considered impact indicators. The results reveal that the proposed MG offers a revenue of 29,520 US$/yr by routing excess energy to neighbors after fulfilling the prosumers' demand at an optimal NPC of 364,906 US$. Furthermore, outcomes obtained from the LCA analysis show that among the MG components, batteries have the highest impact on human health (74%) and ecosystems (78%) due to greater GHG emissions (CO2 48%, CH4 37%, and N2O 48%).
更多
查看译文
关键词
microgrid,environmental impact assessment,hybrid,techno-economic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要