The Modulated Magnetic Domain Structure in the La 0.67 Sr 0.33 MnO 3 Ferromagnetic Films by Strain Engineering

physica status solidi (a)(2023)

引用 0|浏览2
暂无评分
摘要
Novel magnetic domain structures attract much attention due to their potential applications in the high performance of spintronic devices. Herein, the magnetic domains of La 0.67 Sr 0.33 MnO 3 (LSMO) thin films, which epitaxially grown on (100)‐, (110)‐, and (111)‐oriented (LaAlO 3 ) 0.3 (Sr 2 AlTaO 6 ) 0.7 (LSAT) substrates, are systematically investigated. The (100)‐ and (110)‐LSMO films show a stripe domain pattern. After in‐plane magnetic field saturation, the direction of the stripe domains in (100)‐LSMO no longer rotates with the change of magnetic field, while the stripe domains in (110)‐LSMO rotate continuously. The (111)‐LSMO films produce randomly distributed bubble‐like magnetic domains, which gradually connect into strips with the increase of the external magnetic field, and the stability of the magnetic domain in (111)‐LSMO is better than the ones in (100)‐ and (110)‐LSMO under a magnetic field. In addition, it is found that with the increase of thickness, the random domains in (111)‐LSMO films are gradually transformed into mazy domains. These phenomena can be understood by the regulable strain anisotropy and the magnetic anisotropy. Herein, an effective way is suggested to modify the magnetization anisotropy and magnetic domain because spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.
更多
查看译文
关键词
ferromagnetic films,modulated magnetic domain structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要